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The dynamic stiffness method is proposed to examine the dispersion of waves in an inclusion-reinforced 
composite plate. The shape of inclusion is modelled as spheroid that enables the composite reinforcement 
geometrical configurations ranging from sphere to short and continuous fiber. Using the Mori-Tanaka mean-field 
theory, the effective elastic moduli of the composite plate are predicted explicitly and are able to elucidate the 
effect of inclusion’s shape and volume fraction on the composite elastic behaviour. The resulting moduli are then 
applied to the dynamic stiffness matrix. From these findings indispensable information on the requirements for 
examining the dispersion of waves in the plate in vacuo are obtained. Numerical simulations have been given for 
dispersions in various wave types at various inclusion shape, inclusion content, and plate thickness as well. The 
results indicate that the inclusion content, aspect ratio and the plate thickness affect the propagation velocity and 
wavenumbers. Larger aspect ratios generally possess higher propagation speed. In other words, using short fibers 
generally results in a lower propagation speed. 

1 Introduction

Information about the vibration and acoustic radiation 
characteristics of a solid structure may be obtained from its 

dispersion relation, which relates the angular frequency 
to the propagation wavenumber k. Some important 
characteristics readily seen from the dispersion relation are: 
(1) phase velocity, (2) group velocity, and (3) frequency 
range where the wave is able to propagate (i.e., is not 
evanescent). The propagation velocity and wavelengths 
associated with the dispersion relation are directly related to 
the sound radiation efficiency of the structure. The 
corresponding eigenvector for each k will also provide the 
information about the modal structure and acoustic 
radiation characteristic of the propagating wave. Since only 
the transverse displacement of a plate produce sound, the 
relative magnitudes among the tangential, longitudinal, and 
transverse modal components are particularly important in 
structural acoustics. All of these important structural 
acoustics features can be obtained from a thorough analysis 
of the dispersion relation. Furthermore, the solution of a 
finite plate vibration under a specific boundary condition 
can also be obtained from the dispersion relation together 
with the associated eigenvectors, including all propagating 
and non-propagating (evanescent) modes. Such a dispersion 
relation has been a subject of great interest for several 
decades in various applications, including structural 
acoustics, non-destructive testing, noise control engineering, 
earthquake engineering, geotechnical engineering, material 
property identification, etc. 

The characteristic analysis of sound radiation from an 
infinite plate has been investigated by authors [1-2] using 
either the classical thin plate or Timoshenko-Mindlin plate 
theory. It is well known that the classical thin plate theory 
is only applicable at frequencies much lower than the 
coincidence frequency where it predicts infinite flexural 
phase and group velocities. Using the Timoshenko-Mindlin 
plate theory has shown a considerable improvement of the 
classical theory, especially at and near the coincidence 
frequency [3]. Based on elasticity theory, several exact and 
numerical methods have been proposed to characterize 
waves in anisotropic [4-5] laminated plates. Among them, 
the method of dynamic stiffness is one of simple and 
powerful techniques for analyzing wave phenomena in 
layered media. This technique, as applied to acoustics, has 
its roots in the work of Pestell and James [6]. Spicer [7] 
developed a simple vector decomposition obtaining the 
dynamic stiffness matrix of an isotropic elastic layer. The 

most general analysis of this method was given by Skelton 
and James [8,9] and Hwang et al [10] to give a theoretical 
description of sound radiation from composite layered 
media. Their studies have facilitated both the exact and 
numerical solutions for acoustic radiation by a composite 
plate. In light of the simplicity of the dynamic stiffness 
method, the present work will employed this method to 
analyze wave dispersion in a fiber-reinforced composite 
plate in vacuo.

As fiber-reinforced composites gain popularity, the need for 
a basic understanding of the composites grows. This paper 
addresses acoustic radiation from fiber-reinforced 
composite plates made of a base material with stronger 
inclusions. The most essential material properties of such a 
composite are elastic constants, which govern the 
composite vibroacoustic behaviour. In this study, the Mori-
Tanaka mean-field theory [11-12] is initially adopted to 
model an inclusion-reinforced composite and to elucidate 
the influence of inclusion aspect ratio and inclusion content 
on the overall elastic behavior. The inclusions are treated as 
spheroidal inclusions whose aspect ratio ranges from one 
(i.e., sphere) to much greater than one (i.e., continuous 
filament). Each constituent may be isotropic or anisotropic 
material. The resulting effective elastic constants of the 
plate then denotes as a function of phase properties, volume 
fraction, and inclusions’ shape.  

To analyze the dispersion relation of fiber-reinforced plates, 
the obtained effect elastic moduli are further applied to the 
dynamic stiffness matrix. From these findings indispensable 
information on the requirements for examining the 
vibroacoustic response of a laminated plate containing 
spheroidal inclusions in the plate in vacuo is obtained. 
Finally, numerical examinations for an E-glass/Epoxy 
inclusion-reinforced plate have been given. The information 
that how the volume inclusion fraction, the inclusion aspect 
ratio, and the plate thickness affect the propagation velocity 
and wavenumbers is clearly illustrated.

2 Effective elastic moduli of the 
composite plate 

The study of wave dispersion in a composite plate 
inherently involves the estimation of their effective 
properties in terms of details of their microstructure, i.e., 
phase properties, volume fraction, shape, etc. As will be 
seen in the next section, the effective elastic properties are 
important and useful as they are the key ingredient 
necessary in the dynamic stiffness matrix for obtaining the 
wave dispersion in inclusion-reinforced composites. To 
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estimate the effective elastic properties, it is convenient to 
consider a sufficiently large composite plate containing 
identically shaped, unidirectionally aligned, and randomly 
distributed fibers with elastic moduli C1

ijmn and volume 
fraction f. The domain surrounding the fibers is called 
matrix and has elastic moduli C0

ijmn. Each fiber is 
approximated by a spheroidal inclusion defined by 

2 22
2 31: 1

2 2
1 3

x xx

a a
  (1) 

where a1 and a3 are the semiaxes of the spheroid. The 
assumption that the shape of fibers is spheroidal enables 
one to treat composite reinforcement geometries ranging 
from thin flake to continuous fiber reinforcement. 

Based on the Huang’s [12] previous results, the effective 
elastic moduli of fiber-reinforcement composites with 
unidirectionally aligned fibers can be written as 

0 0 1 1 0( )C C fC T C Cijmn qrmn qrmnijmn ijab abqr   (2) 

where T-1
abij is the inverse of  Tabij  defined by 

0 1 0(1 )( )T C f C C Sijab mnabijmn ijmnijab   (3) 

with Smnab being the well-known Eshelby tensors that can be 
found in the paper of Huang [13]. Throughout this paper, 
conventional indicial notation is used where repeated 
lowercase subscripts are summed over 1 to 3. 

3 Dispersion of a thick orthotropic 
plate

The following derivation of the dispersion equation is based 
on the text of Skelton and James [9]. The strain components 

ij are related to the displacement components ui by the 

following relations. 

1

2

uu ji
ij x xj i

  (4) 

In the absence of body forces in the composite plate, the 
equations of motion are expressed as 

2

2

uij i
x j t

  (5) 

For an orthotropic material, the constitutive equation that 
gives the following relation between stresses ij and strains 

ij is 

0 0 011 12 1311 11

0 0 012 22 2322 22

0 0 013 23 3333 33

0 0 0 0 0 24423 23

0 0 0 0 0 25513 13

0 0 0 0 0 26612 12

C C C
C C C
C C C

C
C

C

  (6) 

where Cij are the effective elastic constants given by 
equation (2). Denote the x1x2-spatial Fourier transform pairs 
of a field quantity f(x1,x2,x3) as 

1 2
1 ( )( , , ) ( , , )1 2 3 324

x xf x x x f x e d di   (7) 

where 1i ,  and  are the wave numbers for wave 

propagation in the x1- and x2-direction, respectively. Now, 
taking the x1x2-spatial Fourier transform of the time-

harmonic equations of motion and with use of equations (4) 
and (6) leads to the following spectral equations of motion 
in wave number domain: 

, ,2 1 3

, , 02 32 3 , ,3 3 3

u x
u x

xx u x
X Y Zi   (8) 

in which the coefficient matrices are given by 

0 055

0 044

0 0 33

C
C

C
X

0 0 13 55

0 0 23 44
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C C

C C C C
Y

0

0
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2 2 2
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2 2 2
55 44

C C C C
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  (9) 
To solve the spectral equations of motion (8) a solution in 
the form of the travelling waves: 

3, , ,3
xu x U ei i

i
 (10) 

is assumed, where  is a wavenumber along the x3 direction. 
Substituting the foregoing equation into equation (8) gives 
the following: 

2
11 55 12 13

,1
2 , 012 22 44 23 2

,32
12 23 33 33

P C P P
U

P P C P U
U

P P P C

 (11) 

where 

2 2 2,11 11 66 12 66 12P C C P C C

2 2 2,13 13 55 22 66 22P C C P C C    

2 2 2,23 23 44 33 55 44
P C C P C C  (12) 

For a nontrivial solution, the determinant of the square 
symmetric matrix in equation (12) must be zero, thus 
yielding the characteristic equation 

6 4 2 00 21 3
a a a a  (13) 

where the coefficients are given as 

55 44 330
a C C C

2 2( ) ( )1 44 11 33 33 55 55 33 1113 23
a C P C P C P C C P P

2( )22 33 11 11 33 11552 33 44 23

2 2                   2 12 23 13 2212 33 13

a P P C P C P P C P P

P P P P C P P

2
11 22 33 333 12

a P P P P P  (14) 

Since the square matrix in equation (11) is positive definite, 

all of the resulting eigenvalues  are real and positive. 

Therefore, the six values of  which satisfy the equation (13) 
are thus 
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,   ,   1 1 2 1 3 2

,  ,    4 2 5 3 6 3

z z z
z z z

 (15) 

When these roots are substituted back into equation (11), 
we will obtain the six wave solutions (eigenvectors) 
UiJ( , ). Hereafter lowercase subscripts take on the range 1,
2, 3, while uppercase subscripts range from 1 to 6.
With the six wavenumbers and corresponding 
eigenfunctions, the spectral displacement solution can be 
constructed as a linear combination of six partial wave 
solutions: 

3
6

, , ,3
1

J xu x A U ei J iJ
J

i  (16) 

where AJ are undetermined coefficients. This equation can 
be evaluated at the upper boundary (x3=h) and the lower 
boundary (x3=0), in turn, to give the matrix equation: 

( , )u rA  (17) 

where 

( , ) ( , , )  ( , , )  ( , , )1 2 3

   ( , ,0)  ( , ,0)  ( , ,0)1 2 3

u h u h u h

Tu u u

u
   

1 2 3 4 5 6
TA A A A A AA  (18) 

and the components of the coefficient matrix r  are 

, , ,1 1 2 2

, ,        ,3 4 1

, , ,5 2 6 3

J J

J

i h i hr U e r U eJ j J J
i hr U e r UJ zJ J J

r U r UJ J J J

 (19) 

Similarly, the relationship between the components of 
traction normal to the plate surfaces and the unknown 
coefficients can be also obtained: 

( , ) pA  (20) 

where 

( , ) ( , , )  ( , , )  ( , , )31 32 33

  ( , ,0)  ( , ,0)  ( , ,0)31 32 33

h h h

T

and the elements in the matrix p  given in the equation (20) 

are

( , ) ( , )1 55 1 3 J hp C U U eJ J J J
ii

, ,2 44 2 3 J hp C U U eJ J J J
ii

, ,3 13 1 23 2

                         ,33 3 J

p C U C UJ J J
hC U eJ J

i
i

   

( , ) ( , )4 55 1 3p C U UJ J J Ji

( , ) ( , )5 44 2 3p C U UJ J J Ji

( , ) ( , )6 13 1 23 2

                         ( , )33 3

p C U C UJ J J
C UJ J

i
 (21) 

The unknown vector A  may be eliminated between 
equations (17) and (20), which results in 

( , ) ( , ) ( , )D u  (22) 

where 

1( , )D pr  (23) 

is termed as the dynamic stiffness relating the spectral 
displacements and the spectral tractions at the boundaries. 

The quantities , , and  are related by a dispersion 
relation, which gives the relationship between frequency 

and wavenumber. When the plate is free from surface 
tractions at the boundaries, equation (22) becomes 

( , ) ( , )D u 0  (24) 

The dispersion relation is obtained by setting the 
determinant of the dynamic stiffness matrix ( , )D  in the 

above equation equal to zero. This relationship displays the 
characteristic dispersive nature of wave propagation in the 
plates. That is, waves of different frequencies travel at 
different phase velocities. The resulting roots (the values of 

 and ) of the determinant of ( , )D  characterize the free 

propagating waves, 1 2( )( , , )3
x x tu x ei

i i , in the 

plate. In this study, the focus is on the plane wave 
propagating along the x1-axis only, that is, 

1( ,0, )3
x tu x ei

i i .

4 Numerical results and discussions 

In order to demonstrate how the volume fraction f and the 
aspect ratio a1/a3 of fibers affect the composite moduli and 
wave dispersion in the composite plate, following are 
discussed the numerical results for an E-Glass/Epoxy 
composite. The elastic properties used for the calculations 
are C0

11=8.23(GPa), C0
12=4.24(GPa) and mass density 

=1400 kg/m3 for Epoxy matrix; C1
11 = 83.34(GPa), C1

12 = 
23.51(GPa) and mass density =2800 kg/m3 for E-Glass 
fibers. For this numerical simulation of the fiber-reinforced 
composite plate, fibers are oriented in the x1 direction. In 
other words, the composite plate is reinforced primarily in 
the x1 direction. By substituting the above values of C0

ij and 
C1

ij into equation (2), one finds that the nonzero terms are 
C11, C12=C13, C22=C33, C23, C44, and C55=C66. It can be 
proved that C44=(C33-C23)/2, thus the composite includes 
only five independent elastic constants. This indicates that 
x2x3-plane is the plane of isotropy and the composite is 
macroscopically homogeneous and transversely isotropic. 

Figure 2 shows the variations of the effective moduli Cij
with changes in the fiber aspect ratio a1/a3 at the fiber 
content f=0.3. It is illustrated that except C11, all other 
moduli slightly decrease with the inclusion aspect ratio and 
have no apparent change when the ratio is greater than four. 
The figure also depicts that the influences of the inclusion 
aspect ratio on the Poisson’s terms (C12 and C23), transverse 
and shear moduli (C22 and C55) are not as perceptible as the 
longitudinal modulus C11. Figure 3 displays the effective 
moduli Cij increase in a monotonic manner with respect to 
the fiber content f at the fiber aspect ratio a1/a3=64. For the 
material system studied herein, all effective moduli increase 
in a monotonic way with the fiber content f since the elastic 
constants of the fibers are stiffer than those of the matrix. 
Among the five independent moduli, the longitudinal 
modulus C11 increases significantly with f since the fibers 
are aligned and parallel to the x1-axis. This suggests that the 
effects of the inclusion aspect ratio and volume fraction on 
the wave dispersion in the composite plate may be directly 
assessed based on C11.

Figures 4 and 5 show the dispersion curves for the inclusion 
aspect ratio a1/a3=1 and 64, respectively, when the plate 
thickness is doubled (h=6 cm). The essential feature of the 
dispersion curve of this thicker plate are about the same as 
those of h=3 cm plate discussed above. However, thicker 
plates contribute smaller wave number than do thinner 
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plates. As can be seen in the figure, bending wave begins to 
be perceptible as the plate becomes thicker. It is worth 
noting that higher-order modes emerge at high frequencies. 
These modes are supersonic in both air and water. They are 
concerned primarily in ultrasonic and will be discussed in 
the future work. As usual, the first higher mode starts at 
frequency 10 kHz where the shear wave wavelength is two 
times the plate thickness and the corresponding 
wavenumber k=2 / SH=52.36. The second higher mode 
starts at frequency 18 kHz where the plate thickness equals 
one half of the longitudinal wave wavelength, i.e., L 12 

cm. Figure 4 also indicates that all waves in the thicker 
plate are supersonic in air. At frequencies below 16.5 kHz, 
the longitudinal wave is supersonic in water and becomes 
subsonic above 16.5 kHz and then gradually approaches to 
shear wave. For the same thickness plate with the aspect 
ratio a1/a3=64, the bending wave is close to the shear wave 
as indicated in Figure 5. The longitudinal wave is 
supersonic in water in all frequency intervals and its wave 
speed is much faster than that in Figure 4. 

Figure 6 shows the variation of dispersion curves with the 
inclusion aspect ratio for the case f=0.3, h=3 cm, and 
C1

11/C0
11=100. It can be seen that bending and longitudinal 

wavenumbers decrease with the aspect ratio, while the 
shear wavenumber has no apparent change with the ratio. 
At the aspect ratio a3/a1 =64 all wavenumbers closely 

approach to their asymptotic values, indicating that the 
reinforcing effect due to fiber length is saturated at this 
value. Figure 7 illustrates the dispersion curves for various 
values of stiffness ratio C1

11/C0
11. The variation trends of 

the bending and shear behaviour with respect to different 
values of C1

11/C0
11 closely resemble those in Figure 6. The 

stiffness ratio effect is found to be even more prominent for 
the longitudinal wave and the highest effect occurs at 
C1

11/C0
11=100. 

5 Conclusion 

The dynamic stiffness method presented here successfully 
solves the problems of the dispersion of waves in a 
composite plate reinforced with spheroidal inclusions. The 
effective moduli of the composite plate, appearing in the 
dynamic stiffness matrix, are predicted by the Mori-Tanaka 
mean-field theory. Use of the proposed method has 
demonstrated the capability of a straightforward continuous 
tracking on the changes of the dispersion relations and the 
corresponding modal patterns with frequency for each 
branch of the dispersion curves associated with a particular 
analytical root. Therefore, a parallel display of the 
dispersion curves used in this paper has shown to be useful 
to gain more insightful understanding about the wave 
phenomena in inclusion-reinforced composite plates. 
Analysis results indicate that among the independent elastic 
moduli, the longitudinal modulus C11 parallel to fibers’ 
direction is a dominant term, whereas the others are less 
influential. At high aspect ratio, the corresponding larger 
C11 (than the other moduli) results in much stronger 
bending stiffness, and the bending wave speed thus become 
greater. As the plate becomes thicker, bending waves 
begins to be perceptible and higher-order modes emerge at 
high frequencies, but shear and longitudinal wavenumbers 
are insensitive to thickness. Results also show that as the 
inclusion content f increases, bending and shear 

wavenumbers are significantly decreased, while 
longitudinal wavenumbers drop slowly. 
In the future work, the effects by fluid-loading will be 
investigated. The approach used here will be modified to 
include the fluid-loading effect on the dispersion relations 
and the associated modal patterns in composite plates. 
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Figures

Fig.1 Geometry of a composite plate. 

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Aspect ratio of inclusions

C
ij (

G
pa

)

C
11

C
22

C
12

C
23

C
55

Fig.2 Effective moduli Cij versus aspect ratio a1/a3 at 

inclusion content f = 0.3.
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Fig.3 Effective moduli Cij versus inclusion content f at 

aspect ratio a1/a3=64.

Fig.4 Dispersion curves for a 6 cm thick plate in vacuo at 
inclusion aspect ratio a1/a3=1.
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Fig.5 Dispersion curves for a 6 cm thick plate in vacuo at 
inclusion aspect ratio a1/a3=64.

Fig.6 The effect of inclusion aspect ratio (a1/a3) variation 
on dispersion curves for a 3 cm thick plate in vacuo with 

C1
11/C0

11=100 and f=0.3.

Fig.7 The effect of stiffness ratio (C1
11/C0

11) variation on 
dispersion curves for a 3 cm thick plate in vacuo with 

C1
11/C0

11=100 and f=0.3.
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