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Multibeam sonar records have a high resolution raster character. Unfortunately, interpolating and approximating 
and eventually displaying scattered 3D raster data of high volume leads to some difficulties related to a computer 
processing power. The paper presents some advantages of using hierarchical splines as applied to real data from 
multibeam EM 3002 sonar acquired during acoustic  survey on Southern Baltic. The proposed approach consists 
of two stages: firstly,  all acquired multibeam sonar raw data are interpolated with high density uniform spline 
interpolation. The knots and control points of interpolated network are saved for defined resolution level. In the 
next stage preprocessed high resolution data are combined with low resolution data sets following prior knot 
decimation process. Such approach allow real time 3D displaying of multibeam sonar data for different zoom 
levels.  

Introduction 

The bathymetric data features wide range of vertical 
resolution. Bathymetric records from multibeam sonar 
(MBS) posses decemeter or even higher resolution, on the 
other side ocean bathymetry features 1 km resolution. The 
applications of MBS may be in many areas obvious 
redundancy and ambiguity [3], but at the same time can be 
useful in an approximation approach. The paper presents 
the approximation approach using a hierarchical spline 
techniques. The approach allows for a flexible and 
appropriate resolution for different scales in the process of 
visualization and bottom imaging. 

Spline functions 

Spline functions can be expressed as linear combination: 
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where )(kc  is a control point, and nϕ a base function of n 
degree. The linear combination is responsible for spline 
function smoothenes. Spline functions of integer knots can 
be interpreted as functions of different resolution in the 
context of multiscale representation [1]. The base funtion 
equation for n = 0 yields ( )mx /0ϕ , and is 1 for 

[ ]mx ,0∈  and 0 in other case: 
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where ( )khm
0  represents a filter of Z transform 
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which represents n+1-th convolution of discrete puls and 
can be implemented as extremely fast algorithms eg. FIR 
filters. The coeficients of the filter yields and resemble the 
Pascal triangle. 

 

 

Fig.1. Level of detail process for spline function 
of degree 1. 

This situation is shown in the Fig. 1 for spline function of 
order 1, as so called spline function piramyd. 
Eventually, spline funtion representation for n order is 
represented as: 
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and can be interpreter as the spline function hierarchy. 

Spline functions edge modification 

The hierarchical spline functions of order 1 and 3 are 
presented in the Fig. 2a and Fig. 2b. The figures show the 
way of multiresolution approximation construction process. 
The new set of control points is calculated from control 
points from the upper scale. The scale change can be 
introduced as knot removement and a control point 
reduction. In the first, but important case, base functions are 
triangles (see Fig. 2a). The figure presents the main idea 
behind the decimation process as well. The overall process 
is called a generalization. 
 

 
Fig.2a. Knot resolution change in the process of 

generalization. 
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Fig.2b. Base function of order 3 with mixed resolution. 

 
Fig.3a. The oscillation on the edge of different resolution 

before knot removal. 

 

 
Fig.3b. The oscillation on the edge of different resolution 

after knot removal. 

The control points decimation process means the reducing 
of the approximated data and the scale changing (see 
Fig.2a) [3]. The spline function equation (1) yields then: 
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where h represents scale and ϕ  represents scale function. 
 
The Fig.3. presents a problem which emerge while different 
domains of different resolution are merged, i.e. oscillation 
on the stick edges. The Fig.3a presents the situation after 
knot insertion while Fig.3b, presents the situation after the 
knot removements. The process of the oscillation 
compensation consists in de Boor knot insertion. The 
heuristic algorithm consists of a few steps: 

1. Coarse approximation of low resolution data from 
with spline functions 

2. Knot insertion for areas of high resolution 
3. Control points modification which corresponds to 

the high resolution area 

4. Repeted knot insertion for areas of high resolution 
if the area is not covered by the new set of knots, 
other situation ends the algorithm 

Hierarchical spline multiresolution 
analysis 

The hierarchical spline approach to multiresolution 
representation can be analyzed using the sampling Nyquist 
theorem, what was introduced in the chapter 2 of the paper. 
The chapter underlines an important aspect of  the spline 
functions analysis, namely their FIR filter implementation 
possibility. However, in the context of the paper and the 3D 
data representation, more convenient and general, seems to 
be a geometric approach. 

Let kV  represents control points space of resolution k. 
There is a transformation which transform one space into 
another: 
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where S depicts the transformation. One could imagine such 
representation of different kind of 3D data which are 
represented in some places by control points of high density 
as shown in Fig.4. Fig.4 and Fig.5 present low and high 
control points representation as a regular grid in different 

colors. If 
→
O  would represent a control points translation in 

newer space of higher resolution, the translation in the 
space reads: 
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where ⊕  operator can be interpreted as the transposition 
→
O . The result of the operation was show in the Fig. 5 as 
high density yellow grid overlaid the base low resolution 
control points grid. 
 
The hierarchical spline representation may be applied to 
different kind of data e.g. from bathymetric data of 
electronic chart (low resolution) to bathymetric data from 
multibeam sonar (high density resolution) etc. 
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Fig.4. Multiresoution 3D data representation using 

hierarchical spline function techniques  

 
Fig.5. High and low vertical resolution data approximation 

using hierarchical spline function 

The crucial question, which arises at this point refers to the 
approximation error, as the error could be used by the 
automatic hierarchical spline grid generation process. The 
error could be calculated through following mean square 
error: 
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where )( ixf  represents bathymetric measurement in the 

point x and )( ixs is the spline approximation in the point x. 
The approximation error will depends on the sampling 
frequency (so the Nyquist theorem) and as a consequence 

this is a reason the hierarchical splines are so useful -
because the hierarchical splines can approximate the data 
taking into account their local density and their locality. 
Therfore the local spline approximation error can be very 
useful in the context of the vertical spline konts resolution 
estimation. 

Conclusions  

The problem of the efficient 3D spatial data representation 
is still opened. There are two main reasons for that: 
redundancy and the excessive amount of the data. 
Multibeam sonar data are typical in that context, as 
multibeam sonar records are an example of a high 
resolution quasi-raster spatial data. Interpolating and 
approximating and eventually displaying scattered 3D 
raster data of high volume lead to some difficulties related 
to computer processing power. The proposed approach 
consists of two stages: firstly, all acquired high resolution 
multibeam sonar raw bathymetric data are interpolated with 
high density uniform spline interpolation and then knots 
and control points of interpolated network are saved for 
defined resolution level and combined with low resolution 
data sets [3]. Some redundancy and ambiguity of the 
measurements is not a drawback in the context of the spline 
approximation, but it can be treated rather as an advantage, 
and in fact are indispensable [3]. This flexible approach 
allows for the spline hierarchical technique usage only in 
the areas where it is required, namely areas of high vertical 
resolution measurements.  
At this stage of the investigation, authors have implemented 
algorithms for hierarchical spline representation of 3D 
spatial data of different resolution. The next stage will 
include the process automation as applied to the high 
volume data. This stage will use local approximation error, 
as a first step to the hierarchical spline knot local resolution 
determination. 
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