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A nonlinear parabolic equation (NPE) model for weakly nonlinear sound propagation in an inhomo-
geneous medium is described. The model being formulated in the time domain, complex impedances
cannot be used to simulate ground surfaces. A second NPE model is thus derived to include the
medium in the computational system. Based on a nonlinear extension of the Zwikker-Kosten model
for rigidly-framed porous media, it allows to include Forchheimer’s nonlinearities. Both models are
then adapted to terrain-following coordinates, and used together with an interface condition, allow to
simulate finite-amplitude sound propagation over a non-flat, finite-impedance ground surface. Numerical
examples show that the NPE model is in good agreement with the solutions of the frequency domain
boundary element method. Applications of this model to the simulation of sound propagation from
explosions in air are then discussed.

1 Introduction

Due to their high amplitudes, sound waves from explo-
sions propagate over large distances. The need to de-
velop numerical models that can handle main features
of finite-amplitude sound propagation outdoors is ob-
vious. Specifically, in addition to nonlinearities, nu-
merical models must take into account meteorological
and ground effects (refraction, dissipation, hilly terrain,
ground impedance).

Nonlinear parabolic equation (NPE) models can be used
to propagate weak shocks over moderate distance. At-
mospheric refraction and dissipation can be taken into
account. In this work, a NPE model that includes ground
effects (topography and impedance) is proposed. The
ground layer, characterized by a Zwikker–Kosten (ZK)
model, is included as a propagation medium in the cal-
culations. The derivation of the NPE model for porous
ground layers is described in section 2. Combined with
a boundary interface condition, presented in section 3,
and a NPE model for atmospheric media, it allows to
simulate finite-amplitude sound propagation over an im-
pedant ground surface. Section 4 aims at adapting the
previously developed equations to handle non-flat to-
pographies. Terrain-following coordinates formulations
are used. Finally, the use of this model for simulation
of waves from explosions in air is discussed (section 6).

2 NPE model for rigidly-framed

porous media

The domain considered is two-dimensional with main
axes x (horizontal direction) and z (vertical direction).
The problem is azimuthally symmetric. Total density
ρT and total pressure pT variables are noted as follows:

ρT = ρ0 + ρ′ pT = p0 + p′ (1)

where ρ0 and p0 are ambient density and ambient pres-
sure, respectively, and ρ′ and p′ are acoustic perturba-
tions of these quantities. Components of the flow vector
V are u and w, which are the flow velocities in the x-
and z-directions, respectively. Partial derivation with
respect to the variable i is noted ∂i.
The nonlinear parabolic equation (NPE) model for sound
propagation in porous ground media is based on a non-
linear extension of the Zwikker–Kosten (ZK) model [1].
The ground is considered equivalent to a continuous
fluid for sound waves. A sound wave causes a vibra-
tion of air particles contained in the ground pores, while

the ground frame does not vibrate. The ground layer is
characterized by a set of 4 parameters: the DC flow re-
sistivity σ0, the porosity Ω0, the tortuosity Φ and the
Forchheimer’s nonlinearity parameter ξ. These quanti-
ties are assumed fixed in space and time. In this context,
equations of continuity and conservation of momentum
are [2, 3, 4]:

∂tρT + ∂x (ρT u) + ∂z (ρT w) = 0 (2a)

Φ∂t (ρT u) + ∂x

(

pT + ΦρT u2
)

+ ∂z (ΦρT uw)

+ σ0Ω0 (1 + ξ |u|) u = 0
(2b)

Φ∂t (ρT w) + ∂z

(

pT + ΦρT w2
)

+ ∂x (ΦρT uw)

+ σ0Ω0 (1 + ξ |w|)w = 0
(2c)

Combining Eqs (2) and eliminating terms of third or-
der in x-derivatives and of second order in z-derivatives
gives:

Φ∂2
t ρT = ∂2

x

(

pT + Φρ0u
2
)

+ ∂2
zpT

+ σ0Ω0∂x [(1 + ξ |u|) u] + σ0Ω0∂zw
(3)

To find an expresion for the flow velocities u and w
we use the perturbation expensions method. The same
scalings and expansions as in refs [5, 6] are used1. Eq
(2a) can be rewritten:

(

ǫ∂t −
c0√
Φ

∂x

)

(

ρ0 + ǫρ′1 + ǫ2ρ′2 + · · ·
)

=

− ∂x

[

(

ρ0 + ǫρ1 + ǫ2ρ2 + · · ·
)

(

ǫu1 + ǫ3/2u2 + · · ·
)]

− ǫ1/2∂z

[

(

ρ0 + ǫρ1 + ǫ2ρ2 + · · ·
)

(

ǫw1 + ǫ3/2w2 + · · ·
)]

(4)

Equating terms of order ǫ and ǫ3/2 gives:

u1 =
c0√
Φ

ρ1

ρ0
; w1 = 0 (5)

Note that ρ′ = ρ1 + O
(

ǫ2
)

, u = u1 + O
(

ǫ3/2
)

and

w = w1 + O
(

ǫ3/2
)

. Substitution of u and w by u1 and
w1 in Eq (3) leads to an error consistent with the accu-
racy sought. The total pressure pT is substituted by a
second-order expansion in ρ′ from an assumed adiabatic
equation of state:

pT = p0 + c2
0ρ

′ + c2
0

(

γ − 1

2ρ0

)

ρ′2 (6)

1However, note that the sound speed in the ground layer is

c0/
√

Φ.
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where γ is the ratio of specific heats at constant pressure
and volume. Inserting Eq (6) in Eq (3) yields:

Φ∂2
t ρ′ = c2

0∂
2
x

[

ρ′ +

(

γ + 1

2ρ0

)

ρ′2
]

+ c2
0∂

2
zρ′

+
σ0Ω0c0

ρ0

√
Φ

∂x

[(

1 +
ξc0√

Φ

∣

∣

∣

∣

ρ′

ρ0

∣

∣

∣

∣

)

ρ′
] (7)

A “moving-frame” operator D⋆
t is introduced:

D⋆
t = ∂t +

c0√
Φ

∂x (8)

The parabolic approximation gives [7]:

∂2
t −→ −2

c0√
Φ

D⋆
t ∂x +

c2
0

Φ
∂2

x (9)

Replacing the second time derivative in Eq (7) and re-
arranging gives a NPE model for propagation in porous
media:

D⋆
t R = − c0√

Φ
∂x

(

β

2
R2

)

− c0

2
√

Φ

∫

∂2
zR dx

− σΩ

2Φρ0

(

1 +
ξc0√

Φ
|R|
)

R

(10)

where β is the hydrodynamic nonlinearity parameter
and R is a dimensionless density perturbation (R =
ρ′/ρ0). Eq (10) can be used to simulate sound propaga-
tion in a porous ground. Note that if Φ = 1 and losses
in the layer are neglected, the model exactly reduces to
the usual NPE model for atmospheric propagation [8].
However, if one wants to couple air/ground models, a
last modification must be done. Indeed, both models
use different frame speeds: c0 and c0/

√
Φ. Correcting

for the frame-speed difference leads to the following sub-
stitution:

D⋆
t −→ Dt +

c0√
Φ

(

1 −
√

Φ
)

∂x (11)

3 Derivation of a boundary inter-

face condition

As both models use the same moving-frame speed, they
can be combined to simulate finite-amplitude sound pro-
pagation over a rigidly-framed porous ground layer. This
section aims at establishing a first-order boundary in-
terface condition to link these two propagation mod-

els. The variables p
′a
i,j and p

′g
i,j are introduced to denote

quantities in layer A (air layer) and layer G (porous
ground layer), respectively, at range i∆x in the mov-

ing window and altitude j∆z. The fluid-fluid interface
is taken to be midway between two vertical grid points
with indexes j = 0 and j = 1. Auxiliary virtual points
p

′a
i,0 and p

′b
i,1 are created. In the following we assume that

the deformation of the interface by the wave is small [9].
Interfacial boundary conditions are continuity of pres-
sure and normal flow velocity:

[p′a] = [p′g] [wa] = [wg ] (12)

where the square brackets denote a quantity across the
interface. We seek for expressions of wa and wg involv-
ing the pressure disturbance p′ to the first order. As a

first order boundary interface condition is sought, lin-
earized equations are used; for the air layer A we use
the linearized Euler equation:

ρ0∂t (wa) = −∂zp
a
T (13)

The same scalings and expansions as in section 2 and
in refs [5, 6] are used. Rewriting Eq (13) and equating
terms of order 1 and 3/2 gives:

wa
1 = 0 wa

2 = (ρ0cw∂x)
−1

∂zp
′a
1 (14)

Note that wa = wa
1 + wa

2 + O
(

ǫ5/2
)

. To the order of
accuracy sought in this work it can be written:

wa = (ρ0c0∂x)−1 ∂zp
′a
1 (15)

To find an expression for wg we start from the following
equation [10]:

Φρ0∂tw
g = −Ω0∂zp

g
T − σ0Ω0w

g (16)

The same procedure is applied; one can find:

wg =
(√

Φρ0c0∂x − σ0Ω0

)

−1

Ω0∂zp
′g
1 (17)

The interfacial condition for the continuity of vertical
velocities wa and wg can now be written:

[

(ρ0c0∂x)−1 ∂zp
′a
]

=
[

(√
Φρ0c0∂x − σ0Ω0

)

−1

Ω0∂zp
′g

] (18)

Rearranging Eq (18) leads to:
[√

Φ∂zp
′a − σ0Ω0

ρ0c0

∫

∂zp
′a dx

]

=
[

Ω0∂zp
′g
]

(19)

A trapezöıdal law and finite-differences expressions for
p

′a and p
′g and their derivatives are used to discretize

Eq (19). For a layer l we use:

[

p
′l
]

=
p

′l
i,1 + p

′l
i,0

2
;
[

∂zp
′l
]

=
(

p
′l
i,1 − p

′l
i,0

)

∆z−1

(20)

Replacing these approximations into Eq (19) gives ex-

pressions for unknown quantities p
′a
i,0 and p

′g
i,1:

p
′a
i,0 =

(

A1 − G1

A0 + G1

)

p
′a
i,1 +

(

G0 + G1

A0 + G1

)

p
′g
i,0

+

(

SA

A0 + G1

) i+1
∑

m=Nx

(

p
′a
m,1 − p

′a
m,0

)

(21a)

p
′g
i,1 =

(

G0 − A0

A0 + G1

)

p
′g
i,0 +

(

A0 + A1

A0 + G1

)

p
′a
i,1

+

(

SA

A0 + G1

) i+1
∑

m=Nx

(

p
′a
m,1 − p

′a
m,0

)

(21b)

with:

A0 = A1 =
√

Φ +
σ0Ω0∆x

2c0ρ0
(22a)

G0 = G1 = Ω0 (22b)

SA =
σ0Ω0∆x

c0ρ0
(22c)
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Eqs (21) give expressions for the unknown virtual points
pa

i,0 and pg
i,1, and thus allow, used together with the at-

mospheric and porous ground NPE models, to simulate
weakly nonlinear sound propagation over an impedant
ground. If one sets Φ = +∞ we obtain from Eqs (21):
p

′a
i,0 = p

′a
i,1 which is the condition for a hard wall. A

transparent interface condition can be obtained by set-
ting σ0 = 0, Ω0 = 1 and Φ = 1 (parameters for an air
layer). This leads to: A0 = A1 = 1 and G0 = G1 = 1

and thus p
′a
i,0 = p

′g
i,0 and p

′g
i,1 = p

′a
i,1. If one sets σ = 0

and Ω0 = 1, Eqs (21) become:

p
′a
i,0 =

√
Φ − 1√
Φ + 1

p
′a
i,1 +

2√
Φ + 1

p
′g
i,0 (23)

p
′g
i,1 =

1 −
√

Φ√
Φ + 1

p
′g
i,0 +

2
√

Φ√
Φ + 1

p
′a
i,1 (24)

which is the interface condition for two fluid layers with
densities ρ0 and

√
Φρ0 [9]. From a numerical point of

view, a common way for solving for diffraction is to use
first order finite-differences. This leads to a tridiagonal
system of equations that is solved columnwise, from the
right to the left of the calculation grid. The boundary
interface condition can thus be naturally included in the
diffraction solver by imposing values on corresponding
points without any additional solver modifications.

4 Propagation over non-flat sur-

faces

For long-range sound propagation applications the need
to include the effect of hilly terrain in the model is obvi-
ous. To achieve this goal, a convenient method is the use
of terrain-following coordinates [11]. The ground height
is noted h (x) and its first and second derivatives with
respect to x are noted h′ and h′′, respectively. We use
the following transformation :

x −→ x z −→ z + h (x) (25)

Using such a transformation has the advantage of con-
serving spatial resolution over the calculation grid [11].

4.1 Atmospheric model

We start from a nonlinear wave equation written in di-
mensionless form, where nonlinearities have been ne-
glected in the z-direction:

∂2
t R = ∂2

x

(

c2
0R + c2

0βR2
)

+ c2
0∂

2
zR (26)

In the transformed coordinates system the above equa-
tion is:

∂2
t R = D

2
x

(

c2
0R + c2

0βR2
)

+ c2
0∂

2
zR (27)

where D
2
x is the transformed second x-derivative:

D
2
x = ∂2

x + h′2∂2
z − h′′∂z − 2h′∂x∂z (28a)

= ∂2
x + L (28b)

with L = h′2∂2
z −h′′∂z −2h′∂x∂z. Using a moving-frame

operator (see section 2) leads to:

DtR = − ∂x

(

c0
β

2
R2

)

− c0

2

∫

∂2
zR dx

−
∫

L

[

c0

2
R +

c0β

2
R2

]

dx

(29)

Under the assumptions of weak nonlinearities and dom-
inant propagation in the x-direction Eq (29) can be re-
duced to:

DtR = − ∂x

[

c1R + c0
β

2
R2

]

+ c0h
′∂zR

− c0

2

∫

[(

1 + h′2
)

∂2
zR + h′′∂zR

]

dx

(30)

The model developed can be used to simulate sound pro-
pagation over smooth terrains. However, large slopes
may lead to incorrect results: the integral in Eq (29)
contains a nonlinear term. Neglecting it implies that
ground topography derivatives are small. Note that if
the ground elevation h is set to zero, Eq (30), further
called Generalized Terrain–NPE (GT–NPE), exactly re-
duces to the usual NPE.

The NPE model has been proven to be the time-domain
counterpart of the frequency domain Parabolic Equation
(PE) [5]. The same procedure can be used to prove that
the GT–NPE is a proper equivalence of the GT–PE [12].
The derivation is straightforward: dropping the nonlin-
ear term in Eq (30), substituing R = f (x, z) ei(kx−ωt)

and neglecting non-dominant terms gives the first-order
“narrow-angle” GT–PE.

4.2 Porous ground model

Similarly, a GT–NPE model for porous ground media
can be obtained. Using the same assumptions as in
section 4.1, transformation of Eq (10) in the terrain-
following coordinates system is direct. One can obtain:

DtR = − c0√
Φ

∂x

[

(

1 −
√

Φ
)

R +
β

2
R2

]

− σΩ

2Φρ0

(

1 +
ξc0√

Φ
|R|
)

R +
c0√
Φ

h′∂zR

− c0

2
√

Φ

∫

[(

1 + h′2
)

∂2
zR + h′′∂zR

]

dx

(31)

4.3 Boundary interface condition

A boundary interface condition has to be derived for
non flat-terrains. The procedure is identical to the one
described in section 3. Expressions for the vertical flow
velocities are:

wa = (ρ0c0∂x)−1
[

∂zp
′a
1 − h′∂xp

′a
1

]

(32a)

wg =
(√

Φρ0c0∂x − σ0Ω0

)

−1

[

Ω0∂zp
′g
1 − h′

(√
Φ∂x − σΩ0

ρ0c0

)

p
′g
1

] (32b)
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Figure 1: Left: SPL maps for BEM (top) and GT–NPE (bottom) models for sound propagation over a (rigid) hilly
ground. Right: SPL slices at altitudes 1.5 m (top), 15 m (middle) and 30 m (bottom).

One can get corrected coefficients to account for eleva-
tion in the boundary interface condition:

A0 =
√

Φ +
σ0Ω0∆x

2c0ρ0

(

1 − h′′∆z

2

)

− h′
∆z

2

(

σ0Ω0

ρ0c0
+

√
Φ

∆x

) (33a)

A1 =
√

Φ +
σ0Ω0∆x

2c0ρ0

(

1 +
h′′∆z

2

)

+ h′
∆z

2

(

σ0Ω0

ρ0c0
+

√
Φ

∆x

) (33b)

G0 = Ω0 − h′
∆z

2

(

σ0Ω0

ρ0c0
+

√
Φ

∆x

)

(33c)

G1 = Ω0 + h′
∆z

2

(

σ0Ω0

ρ0c0
+

√
Φ

∆x

)

(33d)

Note that if one sets h = 0, these expressions reduce to
the coefficients in section 3.

5 Numerical validation

In order to verify the correctness of the different NPE
models developed, a boundary element method code
[13] is used to generate reference solutions. Two con-
figurations are considered: propagation over a hilly and
rigid ground, and propagation over a flat and impedant
ground. Signals amplitudes are low enough for the pro-
pagation to be considered linear.

5.1 Propagation over a hill

The GT–NPE model is used to study the propagation
of a finite-length signal over a hill. The configuration of
this example is taken from ref [11]. The ground elevation
is given by:

h (x) = htop

[

1 +
(x − x0)

2

l2

]

−1

(34)

where htop is the maximum ground elevation, equal to 5
m, l is the hill width, equal to 15 m and x0 is the max-
imum elevation location, equal to 70 m. The maximum
slope is |h′ (x)|max = 0.22. The source is positioned at
x = 0 m, z = 50 m and emits a 8-period 50 Hz sine-wave.
The sound celerity is constant through the domain and
set to 343.4 m.s−1. Spatial steps are both equal to 30
cm and the ground layer is 20 point-thick and perfectly
rigid.

Figure 1 presents calculation results from both BEM
and GT–NPE models. One can see that the parabolic
approximation inherant to the GT–NPE model prevents
having correct SPLs near the source. At a reasonable
distance from the source very good agreement is found
between BEM and GT–NPE calculations.

5.2 Propagation over a ground surface

The propagation of a broad-band pulse over a flat, im-
pedant ground is studied. The source is positioned at
z = 1.4 m and emits a gaussian pulse with central
frequency fc = 850 Hz. A virtual receptor is placed
6 m away from the source and at altitude z = 1.4
m. Three different ground layers are considered. The
first ground layer is a perfectly rigid surface (large Φ).
The second and third configuration have identical tor-
tuosity (Φ = 3) and porosity (Ω0 = 0.3), but differ-
ent flow resistivities (σ0 = 100 kPa.s.m−2 and σ0 =
10 kPa.s.m−2). The normalized impedance used in the
frequency-domain calculations is given by:

Z =

√

Φ

Ω2
0

+ i
σ0

ρ0Ω0ω
(35)

Figure 2 shows snapshots of the propagation together
with the SPLs relative to free field for the three configu-
rations, for both BEM and NPE calculations. Very good
agreement can be observed, even for very soft grounds,
where the difference is about 1dB.
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Figure 2: Left: Snapshots at times 4.1, 7.1 and 11.5 ms of a gaussian pulse propagating over three different ground
layers. Right: SPL relative to free field at position x = 6 m and z = 1.4 m.

6 Conclusion

A NPE model for propagation in porous ground layers
and a first-order boundary interface condition have been
presented. It provides a simple but efficient way of tak-
ing into account ground impedances. Propagation over
non-flat terrains is handled through the use of terrain-
following coordinates, which has been proven to give
satisfactory results for gentle slopes. With atmospheric
refraction and dissipation included, this work provides
a complete NPE model for weakly nonlinear wave pro-
pagation. Propagation of waves from explosions can
be simulated using a three stages procedure: first, a
method based on Euler equations is used in the near
field, where the propagation is highly nonlinear. Next,
NPE models can propagate weakly nonlinear waves over
moderate distances and finally, when the wave ampli-
tude is low enough, (linear) frequency-domain method
like the PE can be used. This hybrid method allows to
propagate waves from explosions over distances up to
several kilometres [14].
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