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Jussieu, 75005 Paris, France
farid.chati@univ-lehavre.fr

Acoustics 08 Paris

7119



Considerable work has been done on the scattering by cylindrical objects having a circular cross section. The 
modal formalism based on the theory of elasticity has been developed for studying the acoustic scattering by 
these elastic cylinders immersed in water. In particular, it has been demonstrated, in normal incidence, that the 
eigenfrequencies of a circular cylinder can be determined from a resonance spectrum. These eigenfrequencies 
correspond to circumferential waves that form a resonance when a phase matching along a closed path is 
obtained. Each eigenfrequency is characterized by a given mode n, i.e., the number of wavelengths spanning the 
circumference. Comparatively, little attention has been devoted to the more general case of the noncircular 
cylindrical cylinders such as the elliptical elastic cylinders. For these objects, we have been developed a modal 
formalism based on the theory of elasticity. From the results obtained theoretically and experimentally, we show 
how to obtain a resonance spectrum, independently of the azimuth incident angle and of the radii ratio (minor 
radius and major radius) so that the eigenfrequencies can be determined. We present also a modal analysis of 
resonances as function of the azimuth incident angle and of the radii ratio. 
  

1 Introduction

Considerable work has been done on the scattering by 
cylindrical objects having a circular cross section. A large 
amount of literature devoted to this topic can be found in 
Ref. 1. Comparatively, little attention has been given to the 
more general case of the noncircular cylindrical cylinders. 
Experimental results are even fewer for this type of 
scatterers [2,3]. The aim of our paper is to obtain, 
theoretically and experimentally, the resonance spectrum of 
an elliptical elastic cylinder immersed in water and then, by 
considering a modal formalism, to determine the modes of 
resonances. 

2 Formulation of the problem 

The modal formalism presented in reference 4 is used in 
our paper. Displacement and stress fields in the noncircular 
cylinder are directly expressed in terms of modal series as 
for the incident and scattered fields. The difficulty consists 
in writing the boundary conditions and in calculating the 
unknown scattering coefficients An. The way of 
circumventing this difficulty is to expand all the fields in 
trigonometric series. The linear system of equations 
obtained finally can be solved numerically.  
The noncircular cylindrical cylinders considered here is an 
elliptical aluminum cylinder. Experimental and Numerical 
results are presented for a plane wave incidence normal to 
the axis of this cylinder. In the cylindrical coordinates 
system (r, ,z), the cylinder radius is expressed as follows 
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where a is the major radius and b is the minor one. This 
solid is characterized by the following parameters: density 

2 = 2765 kg/m3, longitudinal wave speed CL = 6440 m/s, 
shear wave speed CT = 3113 m/s, axis ratio b/a = 0.75, 
major radius a = 2 cm. This aluminum cylinder is immersed 
in water (C1 = 1470 m/s, 1 = 1000 kg/m3). 
The interaction of an ultrasonic harmonic plane wave with 
an elastic cylinder is described in permanent regime, by a 
modal representation (Rayleigh series) [4]. Thus, the 
expression of the pressure field scattered by the object 

PS(r, )  at a point of observation (r, ) is developed into a 
series of normal modes 
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and is approximated in far field, as follows 
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where k = / C1 (f =  / (2 )) denotes the wave number of 
the incident wave,  the pulsation and C1 the sound speed 
in the fluid. Hn

(1) is the first Hankel function of order n. An 
is the unknown scattering coefficient determined from the 
boundary conditions.  

3 Experiment and comparison with  
theory

The short-pulse monostatic and bistatic set-ups of the MIIR 

[5,6] (method of isolation and identification of resonances)
are used to obtain experimental results presented in this 
paper. The elliptical aluminum cylinder is vertically 
immersed in a water-filled tank, 3 m in diameter and 2 m 
deep. The aspect ratio b/a of the elliptical cylinder is equal 
to 3/4, its length is 20 cm and the major axis radius a is 
equal to 2 cm. The material properties are the same ones of 
the previous paragraph. The transducers we used are 
Panametric V3507 broadband transducers with a central 
frequency equal to 200 kHz. The central frequency 
corresponds to ka=17.1 in reduced frequency. These 
transducers allow us to analyze the acoustic scattering in 
the 100–350 kHz frequency range (8.5<ka<30) and the 
diameter of their radiating surfaces is 50 mm.  
A short electric pulse is converted into bulk acoustic wave 
by the emitter transducer. The time-domain responses of the 
insonified cylinder consist of echo waveforms made up of 
specular reflections and elastic wave reradiations. In the 
present investigation, backscattered spectra are obtained 
with a single transducer (monostatic set-up) from the FFT 
of time-domain responses. This transducer is used 
alternately as an emitter and a receiver to obtain the 
acoustic signature of the cylinder at given incidences. A 
correction of the passbands of the transducers is then made 
(Fig.1). 
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The bistatic set-up enables experimental determination of 
angular diagrams. Two transducers are used. The emitter 
transducer is fixed at a given position while the receiver 
transducer rotates in the azimuthal plane, normally to the 
cylinder axis. Figure 2 is an example of an angular diagram 
obtained from this experimental set-up. 
The above theoretical formalism constitutes an exact 
solution for the scattering of a plane wave from a 
noncircular cylindrical cylinder insonified normal to its 
axis. Far-field acoustic scattering amplitudes from such 
elliptical cylinder, calculated for incidences equal to 0°, are 
shown in Fig. 1. This form function is expressed as 
follows : 

n
n
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where )ba(21a 22
eff . 

An incident angle is defined for this object because of its 
nonaxial symmetry. Hence, an incidence equal to 0° 
corresponds to the angle that the acoustic beam makes with 
the major axis of the ellipse. The agreement between theory 
and experiment is very good, validating the theoretical 
approach presented in this paragraph. This excellent 
agreement is also noted for angular results obtained at a 
particular frequency (Fig.2). 
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Fig.1 Far field form function of the elliptical 

aluminum cylinder inc= rec=0°: 
theoretical in dotted line, experimental in solid line 
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 Fig.2 Angular diagram of the elliptical aluminum cylinder 
at the frequency  f=222.5 kHz, inc=0°: 

theoretical in dotted line, experimental in solid line 

4 Resonance spectrum 

Experimentally and theoretically, it is easy to determine a 
resonance spectrum of a circular cylinder from a 
backscattered time signal. For this, it is necessary to 
eliminate the first echo related to the specular signal and 
after, to achieve a FFT of the part of signal related to the 
resonant echoes. A resonance spectrum is thus obtained. 
For a non-circular cylinder, this process is not obvious to 
apply because the elliptical cylinder is not axisymmetric. 
For this, we determine experimental and theoretical 
resonance spectra by using the frequential derivative of the 
curvilinear abscissa s. This derivative versus frequency 
writes in the following way: 

22
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an effective radius aeff defined by 2baa 22
eff . 

The frequential derivative of the curvilinear abscissa s 
reaches a maximal value at a resonance frequency [7]. The 
knowledge of the non-resonant pressure called background 
is not necessary because its variations can always be 
neglected in comparison with those of the resonant pressure 
when using the derivative of the curvilinear abscissa.  
Let us consider for example the case of an aluminum 
circular solid cylinder. Applying the relation Eq.(5) gives 
the theoretical resonance spectrum of the figure 3. Each 
peak of this spectrum corresponds with a resonance. Their 
physical origin lies in the excitation of surface waves on the 
cylinder which, for an acoustic signal incident normally to 
the cylinder axis, circumnavigate the cylinder in a 
peripheral fashion along a closed circumferential path. If 
upon each circumnavigation these waves match phases with 
themselves at their point of origin, this lead to a resonance 
in the scattering amplitude. Consequently, a circumferential 
standing wave is formed with an integer number of 
wavelengths n spanning the circumference [8,9]. The mode 
of vibration n of each peak of resonance can be determined 
experimentally with bistatic scattering measurements [6]. 
Theoretically, the relation Eq.(5) applied to the modal 
pressure field PSOn (Eq.(3)) enables us to separate each 
modal contribution (Fig.4). The various resonances 
represented by a black spot (amplitude) on the interpolated 
image of the figure 4 are attributed to  = 2, 3, 4, 5 and 6. 
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Fig.3 Theoretical backscattered resonance 
spectrum of a circular solid cylinder 
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Fig.4 Interpolated image of modal resonance 
spectra (-15 n 15) of a circular solid cylinder 

Solid lines are superimposed on figure 4. These lines 
(Regge trajectories) are plotted from the eigenfrequencies 
corresponding to circumferential waves, obtained for a 
circular solid cylinder using the classical elasticity theory 
[1]. Each resonance can thus be labeled with two integers 
( ,n). The mode of vibration n  is the number of 
wavelengths around the circular cylinder. The parameter  
labels the resonances for each mode as the frequency 
increases. 

5 Resonance spectra of elliptical
cylinder

Theoretically and experimentally, the backscattered 
resonance spectrum enables us to obtain the acoustic 
signature of the cylinder at given incidences [10]. Contrary 
to the circular cylinder, a significant dependence on 
incident angle inc is noted on Fig.5 and Fig.6. Experimental 
results are compared with the predictions made using dotted 
lines. A good agreement is noted. Nevertheless, some 
differences pointed out by asterisks can be observed in the 
low frequency part of the resonance spectra, particularly in 
the case of a radial symmetry (Fig.6, inc = 90°). Peaks on 
the experimental curve are not visible on the theoretical 
one. These peaks, which are regularly spaced, are very 
certainly due to the resonances of guided waves. They can 
be experimentally observed because of the directivity of the 
transducers and the limited length of the cylinder (L=200 
millimeters). The interpretation of these peaks can be 
suggested according to what happens for the acoustic 
scattering by elastic circular cylinders [11]. The guided 
waves are SH-polarized helical surface waves excited at 
oblique incidence only (the wave vector of the incident 
wave is not perpendicular to the z-axis). This is the reason 
why the peaks are not observed on the theoretical curve 
calculated for a normally incident wave.  

6 Discussion

The agreement between theory and experiment is good 
enough to allow the experimental data to be interpreted 
from our model. The case treated in this paragraph relates 
to an incidence of 90°.  
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 Fig.6 Resonance spectra  inc=90° 
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In order to show the influence of the axis ratio b/a on the 
resonances, spectra have been computed for different minor 
radii b (from b/a = 1 to b/a = 0.75 with a step equal to 0.01). 
The results which depend on the axis ratio b/a, are shown in 
the gray level graph of figure 7 (the darker the shade of 
gray is, the bigger the amplitude is). This representation 
enables us to isolate the resonances and to follow them 
from the circular cylinder (b/a = 1) to the elliptical cylinder 
characterized by b/a = 0.75.  
As example, let us consider two resonances, close to the 
central frequency of the transducers. A solid black line 
surrounds these two resonances on figure 7. For the 
elliptical cylinder characterized by b/a=0.75, the resonance 
frequencies ka are respectively equal to 16.44 (192.3 kHz) 
and 18.59 (217.5 kHz). Those are easily observable on the 
theoretical and experimental resonance spectra of figure 6. 
On the figure 7, the evolution of the resonance frequencies 
versus the axis ratio b/a (b/a=0.75  1) shows that for a 
circular cylinder, the resonance frequencies, ka=13.95 and 
ka=16.41 are respectively those of the waves ( =3,n=1) and 
( =2,n=4). Nevertheless, it is not possible to conclude that 
the modes of two resonances relating to the elliptical 
cylinder b/a=0.75 are characterized respectively by n=1 and 
n=4. 
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Fig.7 Representation (gray level graph) of theoretical 

resonance spectra,  inc=90°, versus b/a (interpolated image) 

The gray level graph of figure 8 relating to the modal 
resonance spectra (-15 n 15) of an elliptical cylinder 
(b/a=0.75)  shows  that  the distribution of modes  is  rather 

 
Fig.8 Interpolated image of modal resonance 

spectra (-15 n 15) of an elliptical cylinder (b/a=0.75) 

 

confusing. It is not easy to gather together resonances in 
order to constitute families of wave as the circular cylinder 
(Fig.4). Moreover, we note that, at a resonance frequency, 
many more modes are observed than for the circular 
cylinder. 
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Fig.9a Distribution of modes at ka=16,44  
for an elliptical cylinder (b/a = 0.75) 
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Fig.9b Distribution of modes at ka=18,59  
for an elliptical cylinder (b/a = 0.75) 

Fig.9a and Fig.9b are the distribution of modes at the two 
resonance frequencies previously considered for the 
elliptical cylinder. It appears, contrary to the circular 
cylinder (Fig.10a, Fig.10b), that a resonance of the elliptic 
cylinder is characterized by several modes. 
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Fig.10a Distribution of modes at ka=13,95 for a circular 
cylinder, wave =3, mode of vibration n= 1  

Acoustics 08 Paris

7123



 

-15 -10 -5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

-20

A
m

pl
itu

de

n
 

Fig.10b Distribution of modes at ka=16,41 for a circular 
cylinder, wave =2, mode of vibration n= 4 

5 Conclusion 

A modal formalism based on the theory of elasticity is used 
to study the acoustic scattering by an elliptical elastic 
cylinder, insonified normally to the axis of this cylinder. 
Good agreement with experiment has been obtained with 
backscattering results.  
In order to determine a resonance spectrum independently 
of the azimuthal incident angle, we apply the frequential 
derivative of the curvilinear abscissa s to the pressure field 
scattered by the elliptical cylinder. An identical treatment is 
applied to the experimental data. The resonance spectrum 
obtained experimentally shows the presence of additional 
peaks relating to the guided waves. These waves are 
generated because of the directivity of the transducers and 
the limited length of the elliptical cylinder. Despite these 
additional peaks, the experimental spectra of resonance are 
in good agreement with the theoretical predictions. 
The agreement between theory and experiment enables us 
to validate the theoretical approach. Then, the frequential 
derivative of the curvilinear abscissa s is applied also to the 
modal pressure. Each resonance spectrum obtained depends 
on the mode n. For a circular cylinder, the resonances are 
easily isolated, and identified with their mode of vibration. 
Compared to a circular cylinder, resonances of an elliptic 
cylinder are identifiable with more difficulty. At a 
resonance frequency, many more modes are observed than 
for the circular cylinder. 
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