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For keeping the Dutch rivers suitable for commercial activities bottom stabilizing measures are required.
For example, the bottom of the river Waal, connecting Rotterdam with German industrial areas, is
subsiding. Since the subsidence varies along the river, dangerous shoals occur. Sediment suppletions are
planned to counteract the subsidence. Appropriate suppletion material is expected to keep the bottom
more stable. To monitor the suppletion effectiveness, multibeam echosounder (MBES) measurements
are planned, allowing for simultaneous estimation of bathymetry and sediment composition. For the
latter, we apply a method employing the MBES backscatter data. It estimates the number of sediment
types present in the survey area and discriminates between them by applying the Bayes decision rule
for multiple hypotheses, implicitly accounting for the backscatter strength ping-to-ping variability. The
method’s applicability was demonstrated in a well-surveyed test area (North Sea). In 2007, MBES
measurements were acquired at the Waal, accompanied with extensive sediment grabbing. Contrary to
the test area, water depths are very shallow and significant bottom slopes exist, requiring corrections.
The lower water depths correspond to smaller beam-footprints, resulting in a higher ping-to-ping
variability. Consequently the discriminating power between sediments will decrease. The performance of
the classification method for this river environment is assessed.

1 Introduction

It is widely accepted that multi-beam echo sounder
(MBES) data can be used to measure the bathymetry,
and to study statistical characteristics of acoustical sig-
nals backscattered from the seafloor. Data acquired
from MBES are employed to obtain information about
the physical properties of the riverbed and seafloor. The
main advantage of the method is its high coverage ca-
pabilities with limited costs.

The backscatter intensity varies with incidence an-
gle. To eliminate this angular dependence, one can for
instance apply the Lambert’s law. The angular depen-
dence of the backscatter data can also potentially be
used as a tool for classification. A problem in this ap-
proach arises for areas where the seafloor type varies
along the swathe. It is therefore difficult to discrimi-
nate between the angular variation and the real seafloor
type variation along the swathe. In an earlier work, a
method was proposed for the classification of the seabed
sediment (see [1]). The method, based on the Bayesian
decision rule, was applied to MBES backscatter data
for the classification in a well-known test area in the
North Sea. This method employs the backscatter data
per angle instead of using the angular behavior of the
backscatter strength. It accounts for statistical fluctua-
tions in backscatter strength, i.e. ping-to-ping variabil-
ity for fixed seafloor type.

There are some issues when dealing with riverbed
classification in very shallow waters, which we need to
come up with. The classical Rayleigh distribution is not
applicable to backscattered data when the determinis-
tic number of scatterers within the resolution cell (also
called ensonified area, signal footprint, or size of scatter
pixel) is not large enough and hence the central limit
theorem does not hold.

MBES measurements acquired at the river Waal in
the Netherlands in 2007, also accompanied with exten-
sive sediment grabbing, are carried out at very shallow
water and significant bottom slopes exist. The lower
water depths correspond to smaller beam footprints,
resulting in a higher ping-to-ping variability. Conse-
quently the discriminating power between sediments will
decrease. The performance of the classification method
for this river environment is assessed.

The objective of this contribution is twofold. First,

we briefly describe the MBES classification method, and
apply it to the data set from the river Waal. For
this area, extensive sediment grabbing is also avail-
able, which allows for an assessment of the classifica-
tion method performance. Then, we explain the prob-
lem with another class of distributions, namely non-
Rayleigh distributions. The possible application of the
K-distribution for the classification of the Waal data is
assessed.

2 Statistical characteristics of

backscatter data

The echo amplitudes measured by the MBES are em-
ployed for seafloor and riverbed classification. The
MBES systems that typically operate at a few 100 kHz
permit seafloor backscatter imaging with a high resolu-
tion. Since the ensonified area A (i.e. the signal foot-
print) is small compared with the beam footprint for
beams away from nadir, many scatter pixels are ex-
pected to fall within the footprint of the receiving beam.
This does not, however, hold for the very shallow water
as we deal with in the river Waal. The number of scatter
pixels N is not large enough in order to use the central
limit theorem, and hence the non-Rayleigh distributions
should be used.

The data employed for the classification method con-
sist of backscatter values (in dB) per receiver beam, i.e.
backscatter values obtained from averaging over N in-
dependent scatter pixels. Such values—given for each
beam angle—are corrected for propagation loss and the
ensonified area A. The averaged backscatter value is
subject to statistical fluctuations and there is a ping-
to-ping variability masking the influence of the seafloor
type on backscatter intensity.

It is traditionally assumed that the backscatter in-
tensity of the ith scatter pixel in a beam, denoted by
the random variable I is exponentially distributed [2]
(or Chi-square distribution with 2 degrees of freedom).
This is based on the validity of the central limit theo-
rem where the number of scatterers Ns inside the res-
olution cell is large enough. The normalized amplitude√

I has then a Rayleigh distribution. The corresponding
backscatter strength in dB is given as: BS = log

10
(I)

and has a Gumbel distribution, which is a peaked asym-
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metric distribution. The Gumbel distribution is a spe-
cial case of the log-Weibull distribution.

2.1 Classification methodology

When the number of scatter pixels N is large enough,
based on the central limit theorem, the averaged
backscatter strength BS (per beam footprint) has a
Gaussian distribution. The classification approach pro-
posed by [1] employs the averaged backscatter data at a
single angle. Without going into the details, the method
comprises the following steps:

Step 1 (nonlinear curve fitting): The algorithm starts by
fitting r number of Gaussian PDF, i.e.

∑r

i=1
ciN(µi, σ

2

i ),
to the histogram of selected measured backscatter
strengths, where each PDF represents one seafloor type.
For each Gaussian distribution, the mean and the vari-
ance are unknown. The linear combination of the PDFs
is also not known. This leads to the total number of
unknown parameters as n = 3r (i.e. ci, the contribution
of individual PDF, µi, the mean of PDF, and σi, the
standard deviation of PDF, i = 1, ..., r).

Step 2 (classes identification): For the classification,
when we know the PDF for each seafloor type i, we can
apply the Bayes decision rule. We have r hypotheses Hi,
i = 1, ..., r, and therefore there exist r possible decisions.
We choose the hypothesis that, given the observation y,
maximizes the likelihood function. The intersections of
the r Gaussian PDFs result in r non-overlapping accep-
tance regions.

Step 3 (assigning seafloor types): We need to assign a
seafloor type to each of the r acceptance regions ob-
tained in the previous step.

Step 4 (quality assessment): The quality of the clas-
sification algorithm can be assessed by calculating the
decision matrix of the multiple-hypothesis-testing prob-
lem. This matrix contains the probabilities of correct
and incorrect decision. The decision matrix provides
a measure of the quality of the classification algorithm
and can be calculated prior to the actual mapping part
of the algorithm. If the probability of incorrect decision
decreases, the power of the discrimination will increase.

Step 5 (mapping): This final step of the algorithm com-
prises the actual mapping, i.e. allocation of seafloor
type (e.g. a colour) to all backscatter strength data
points. As the MBES system provides a position to each
backscatter strength measurement, we can map seafloor
type versus position.

2.2 K-distributed backscatter intensity

The classical Rayleigh distribution theory is not applica-
ble, at least, when

• the seafloor and hence seafloor data are rough,

• the number of scatterers Ns is a random variable
with high variance,

• the number of scatterers within the resolution cell
is not large enough,

Figure 1: Bathymetry map of river Waal (in meter).

• the assumption of ‘independent and identically
distributed’ is violated,

Statistical analysis of backscatter intensity typically
deals with fitting a set of theoretical distributions, to see
which one describes data the best. Non-Rayleigh distri-
butions (e.g. K-distribution) can better fit the skewed
distributions and provide new parameters for character-
ization. It is shown that the K-distribution parameters
depend on the incident angle.

It is widely accepted to use the K-distribution when
the classical Rayleigh distribution is not applicable to
backscatter amplitudes. The K-distribution is ([3])

fI(I) =
2 (N ν

µ
)

N+ν

2 I
N+ν−2

2

Γ(ν)Γ(N)
Kν−N

(

2

√

N ν

µ
I

)

(1)

where µ is the scale parameter, ν is the shape parame-
ter, N is the multilook parameter (i.e. the number of
scatter pixels in the beam footprint), and Kν−N is the
modified Bessel function of the second kind. This K-
distribution results from two independent Γ-distributed
random variables. The K-distribution has proved to be a
promising and useful model for backscattering statistics
in MBES and side-scan sonar data [4, 5].

The maximum likelihood estimation method is usu-
ally applied to estimate the parameters (µ and ν) of
the K-distribution [6]. An alternative is based on the
method of moments. We use a method which is based
on the least-squares principle; fitting a curve to the his-
togram of the data in a least-squares sense. Such esti-
mates are first of all independent of the distribution of
the data, second they are unbiased, and third they give
the best possible precision for the unknown parameters.

3 Results on MBES data

3.1 Experiment description

The river Waal is the main distributary branch of river
Rhine flowing to the central Netherlands for about 80
km. It is a major river that serves as the main wa-
terway connecting the Rotterdam harbor and Germany.
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Figure 2: Histogram of measured backscatter data at
θ = 62◦ (top) and θ = 60◦ (bottom) over the whole
area; left and right transducers; number of Gaussians
r = 3.
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Figure 3: Histogram of averaged backscatter data (over
a small window) at θ = 62◦ (top) and θ = 60◦ (bottom)
over the whole area; number of Gaussians r = 2.

The bottom of the river is subsiding. Since the subsi-
dence varies along the river, dangerous shoals can occur.
Sediment suppletions are planned to counteract the sub-
sidence. Appropriate suppletion material is expected
to keep the bottom more stable. To monitor the sup-
pletion effectiveness, multibeam echosounder (MBES)
measurements are executed, allowing for simultaneous
estimation of bathymetry and sediment composition.

In October 2007, MBES measurements were ac-
quired at the Waal, accompanied with extensive sedi-
ment grabbing. The MBES used for the measurements
is an EM3002, typically working at a frequency of 300
kHz for shallow water; the pulse length is 150 µs; the
maximum number of beams per ping is 254; and the
maximum ping rate is 40 Hz. Figure 1 shows the result-
ing bathymetry. This contribution presents some pre-
liminary results on the classification, and provides some
outlook for future research.
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Figure 4: Histogram of averaged backscatter data at
θ = 62◦ (top) and θ = 60◦ (bottom) over a flat area;
number of Gaussians r = 2.
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Figure 5: Normal probability plot of averaged backscat-
ter data at θ = 62◦ (top) and θ = 60◦ (bottom) over a
flat area; number of Gaussians r = 1.

3.2 Classification results

We now apply the classification method of the previous
section into the measured backscatter data. Figure 2
shows the histogram along with its best Gaussians fit
for the backscatter values at θ = 60◦ and θ = 62◦. The
results indicate that there exist 3 sediment types for
the riverbed (3 Gaussians found; the third PDF is very
small). One can do the classification based on these
results.

There are however a few issues that need to be ad-
dressed here. Water depths are very shallow and sig-
nificant bottom slopes exist. The low depth results in a
small number of scatterers within the resolution cell (Ns

is low), and a small number of scatter pixels per beam
footprint (N is low). In both cases, the central limit
theorem is not valid, and neither is the normality as-
sumption of the backscatter data. These will affect the
classification results. On the other hand, the lower wa-
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Figure 6: Bathymetry of the river Waal; typical area
longitude from 5.32 to 5.33◦ (unit in meter).

ter depths correspond to smaller beam footprints. This
results in a higher ping-to-ping variability (higher vari-
ance), and therefore the discriminating power will de-
crease.

One way out of these dilemmas is to increase the
number of samples for each beam considered. This is
achieved by including more angles around the central
beam angle (e.g. with deviation of 1◦). For such close
angles, usually, the angular dependence of the backscat-
ter distribution is negligible. One can also average over
the close pings as the ping rate is high (40 Hz). These
result in a window that contains, say, 30 samples. By
doing this we are able to

• restore the normality assumption by means of the
central limit theorem, and

• decrease the variance and hence increase the dis-
criminating power between sediments.

Figure 3 shows the histogram and its best Gaussians
fit for the backscatter values after applying this idea.
The histograms are more peaked than those in Fig. 2,
indicating lower variance. To test the normality assump-
tion of the averaged data we considered the southern
part of a smaller area where the longitude lies between
5.33 to 5.36◦—a stable flat area. The corresponding
histogram along with two Gaussian PDFs is shown in
Fig. 4. The second PDF is really small and likely de-
scribes the heterogeneity of the sediment type. This can
also be illustrated using the ‘normal probability plot’ for
the backscatter data (Fig 5). Small deviations are ob-
served at the right hand sides of the plots.

We now apply the classification method to the av-
eraged backscatter data on a small area where the lon-
gitude lies between 5.32 and 5.33◦. The bathymetry is
given in Fig. 6. The results of the classification method
are given in Fig. 7. Two sediment types are identified by
colors (red dots represent high values, i.e. BS ≈ −15 dB;
green dots represent low values, i.e. BS ≈ −18 dB). A
significant correlation between the bathymetry and the
classification results is observed; the deeper the depth
is, the larger the backscatter values will be.

Figure 7: Classification map obtained from backscatter
data obtained at θ=62, 60, 58, 56, 54, 51, 48, 45, 42, 39,
and 36◦. For each angle separate classification has been
applied and results put in a single figure.

3.3 Distribution issues

Another class for the distribution of the backscatter data
is now considered. It is the K-distribution, which holds
for backscatter intensities when the classical Rayleigh
distribution is not valid. The K-distribution is com-
pared to the experimental PDFs. Figure 9 shows typical
graphical examples of the observed backscatter (ampli-
tude) along with their least-squares fit. The fit is not
good enough (large χ2 value), which is a further indica-
tion for having more than one sediment types (this came
out of the Gaussian fitting).

The angular evolution of backscattering statistics via
the evolution of one parameter (the shape parameter ν

in Eq. 1) of the K-distribution is investigated. Its es-
timate is based on the least-squares curve fitting using
the simultaneous estimation of the shape parameter ν

and the scale parameter µ. The results, for ν, are shown
in Fig. 8. The angular evolution of the shape parame-
ter ν coincides with the findings of [5] and [4]. For the
intermediate incidence angles, the shape-parameter val-
ues are low. At grazing angles, the increase is due to the
extension of the resolution cell, which includes a greater
number Ns of scatterers; the central limit theorem ap-
plies, and the K-distribution tends to an exponential
distribution (and correspondingly the Rayleigh distrib-
ution for amplitude).

The results given in [4] show a point where the
functional behavior of the shape-parameter curves (i.e.
ν = ν(θ)) reverse for soft sediments, and the rough
seafloors do not seem to exhibit this transition angle.
This indicates that our seafloor can be considered as a
rough seafloor (we cannot see such transition point here
as the shape parameter increases with θ). We also ob-
serve that the shape parameters, in the stable flat area,
are significantly smaller than their corresponding values
in the entire area (Fig. 8). This can be considered as
the effect of the significant bottom slopes, which have
not been considered in this study.
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Figure 8: Angular evolution of shape parameter ν of
K-distribution for entire area and flat area.

4 Concluding remarks

To monitor Dutch rivers, multibeam echosounder
(MBES) measurements allow one to simultaneously es-
timate bathymetry and sediment composition. The
bathymetry results show that the sediment suppletions
planned to counteract the subsidence in the river Waal
are still stable (we observed a stable flat area, longitude
from 5.33 to 5.36◦ in Fig. 1).

Riverbed classification using the MBES backscatter
data is considered to be a promising approach. This
contribution highlighted a few problems that one usu-
ally deals for shallow water classification, as we deal,
for instance, with MBES measurements acquired at the
Waal. The classification method proposed by [1] was
applied to the Waal data.

There are still issues that we need to come up
with. We should note that the degree to which different
seafloor types can be discriminated using the statistical
characteristics of the backscatter data depends on

• geoacoustical features of the seafloor types. An
obvious effect is on the mean and variance of the
backscatter data,

• degree of the roughness of the seafloor, number of
scatterers Ns in the resolution cell, etc. These usu-
ally affect the distribution itself (e.g. exponential
distribution versus K-distribution), and

• presence of local slopes of the seafloor. In princi-
ple, the backscatter data should be corrected for
the bottom slopes. However, the differential slopes
will significantly affect the distribution parame-
ters.

As a next step, we consider correcting the backscat-
ter data for the significant local slopes, and then apply
the classification method.

Finally, we will also compare the classification results
with the available sediment grabbing.
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Figure 9: Measured histogram of backscatter intensity
and statistical K-distribution fitting; θ = 62◦ (top), θ =
60◦ (bottom).
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