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The issue of the influence of bell vibrations on the sound of brass instruments is still debated. For
such instruments, external sound field is the superposition of the sound field resulting from acoustic
oscillations of the air column and the sound field resulting from direct radiation of the bell and walls.
The aim of this paper is to quantify the bell contribution with respect to the air column one, and to
investigate the conditions for which the former may become audible. For this purpose, the structural
modes of a trombone bell are identified using an experimental modal analysis. For each mode shape,
the radiation efficiency is computed using a model of the radiated sound based on a distribution of
equivalent monopoles. A critical frequency is defined for the bell and allows us to determine at which
condition a given structural mode is radiating.

1 Introduction

The contribution of the vibrating walls to the overall
sound produced by brass wind instrument is a contro-
versial issue [1, 2, 3, 4, 5, 6, 7, 8, 9]. Although it has been
shown that the input impedance could be disturbed by
the vibrations of the walls [1, 2], the direct radiation
from the walls to the external field could also have an in-
fluence. The external sound field results from the super-
position of the contribution of the acoustic oscillations of
the air column, which is the most important part, and
the contribution of the vibrating bell and walls. The
vibrating bell contribution could thus take part to the
sound field. The questions of its relative strength with
respect to the air column contribution, and more im-
portantly the physical processes involved are still not
answered. In this paper, the study is focused on eigen-
modes of vibration of a trombone bell. These modes
are investigated experimentally and numerically. Their
ability to possibly radiate sound efficiently enough to
take an audible part in the overall sound in then inves-
tigated.

2 Structural modes of a trombone

bell, measurements and finite

elements analysis

The study of the sound radiation from a vibrating body
imply a study of its dynamic behavior. In the literature,
the study of the vibration of brass instrument bells has
been investigated experimentally using optical interfer-
ometry techniques. Some vibration patterns due to the
eigenmodes of a trumpet bell were observed by Smith [6]
and more recently by Moore [7], using such techniques.
The vibration patterns at resonances can be classified
considering their nodal properties. As it is the case for
a simple cylinder, the various modes can be described
using a longitudinal index, corresponding to the num-
ber of nodal circles along the bell, and a circumferential
index, corresponding to the number of nodal meridians
around the bell.
Some measurements on a trombone bell which can be re-
moved from the instrument itself have been carried out
using a different technique. Using a shaker as excita-
tor, the vibrations have been recorded using a scanning
laser vibrometer on various points of the bell. The set of
scanned points allows to build vibration patterns on the
surface of the bell. Due to the curvature of the struc-
ture, only a part of the surface was scanned. Frequency
response functions were recorded for all the scanned
points, and the vibration patterns at the resonances

were analysed. An example of an obtained vibration
pattern at a resonance is shown on Fig1, clearly showing
nodal circles and meridians. The results of this analysis

Figure 1: Typical result for a vibration pattern at a
resonance, obtained by laser scanning vibrometer

measurements

is given in Table 1, giving the resonance frequencies as a
function of the circumferential and longitudinal index.
Blanks in Table 1 correspond to vibrational patterns

Table 1: Bell modal frequencies as a function of m,
circumferential index, and p, longitudinal index.

p=3 p=4 p=5 p=6

m = 1 297 Hz 735 Hz 1456 Hz

m = 2 259 Hz 577 Hz 1403 Hz 2091 Hz

m = 3 561 Hz 676 Hz 2140 Hz 2474 Hz

m = 4 716 Hz 979 Hz 2298 Hz 2957 Hz

m = 5 1240 Hz

m = 6 1383 Hz 1630 Hz 3035 Hz

that were not obviously identified. Moreover the longi-
tudinal index is uncertain because of the fact that only
a part of the bell was scanned.
Because of the complex shape of trombone bells the ex-
perimental investigation is difficult. Finite element com-
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putations have thus also been carried out [10]. Using
COMSOL, a finite elements software, the eigenmodes of
the structure have been computed. The model of the
bell was built using a measured bell bore and thickness,
and estimated brass material parameters (Young’s mod-
ulus E = 110 GPa, density ρ = 8700 kg/m3). The bell
is clamped at its entrance and free to vibrate at its end.
The obtained eigenmodes showed similar properties as
the measured one, regarding the structure of nodal lines.
Three hundred modes were obtained between 0 and 6150
Hz. Most of the modes were pairs of modes with same
indexes m and p but with close eigenfrequencies and ro-
tated modal shapes of an angle π/(2m). This is due to
the asymmetry of the mesh used for the computation,
which leads to a breaking of modal degeneracy. Three
examples of eigenmodes are displayed on Fig2, they are
classified considering their modal indexes m and p.

mode m=2 p=3 (233 Hz)

mode m=3 p=3 (449 Hz)

mode m=10 p=6 (6102 Hz)

Figure 2: Eigenmodes of the bell obtained by finite
elements computation

3 Radiation efficiency of the vi-

brating bell

In order to evaluate the ability of such eigenmodes to
radiate sound, radiation efficiencies computation have
been carried out.

3.1 Computation method

For a given eigenmode of the trombone bell, each vi-
brating cell is modeled by a monopole which is posi-
tioned in the center of the region and whose strength
is proportional to its size and to its maximum of am-
plitude of displacement. In order to take into account
the phase opposition between two adjacent vibrating
cells, the strength of two adjacent monopoles are op-
posite. For example, the (2, 3) mode is modeled using
12 monopoles, and (10, 6) using 120 monopoles, one for
each vibrating lobe.
Sound pressure due to this distribution of monopoles is
evaluated in far field on a sphere which is centered on
the barycenter of the monopoles. The pressure field on
a point of the sphere can thus be written as :

p(r) =

N∑
q=1

pq(r) =

N∑
q=1

jωρQq

4π

ejkrq

rq

, (1)

where N is the number of monopoles, ω is the angular
frequency, k the acoustic wave number, ρ the air density,
Qq the strength of the monopole of index q, and rq the
distance between the position of the monopole of index q
and the point on the sphere. The radiated sound power
P is then computed using the expression [11] :

P =
1

2

∫ ∫
S

p(r)2

ρc
dS. (2)

This integral is evaluated numerically by calculating the
pressure on a large number of points on the sphere.
To compute the radiation efficiency, the sound power
radiated is normalised by the sum of the radiated power
due each monopole taken individually [11] : Pref . We
have :

Pref =

N∑
q=1

ω2ρQ2

q

8πc
. (3)

The radiation efficiency of the considered eigenmode of
the bell is thus :

σ =
P

Pref

. (4)

Examples of radiation efficiencies for three modes : (2, 3),
(3, 3) and (10, 6) are given on Fig3.

3.2 Interpretation of the radiation effi-

ciencies

On Fig3, it is shown that the radiation efficiency has a
”high-pass filter” behavior. When the driving frequency
is below the cut off frequency, the vibration pattern is
inefficiently radiating sound. Each mode shape has a
critical frequency, above which the value of radiation
efficiency is close to 1. If the eigenfrequency of the mode
is above the critical frequency, it may be able to radiate
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Figure 3: Radiation efficiency versus frequency for 3
modes of the bell (m=2,p=3), (m=3,p=3) and
(m=10,p=6). Each vertical line indicates the

eigenfrequency of each mode.

power if it is excited. On the contrary, even if it is
excited, the radiated sound power would be weak. An
eigenmode of the bell which is excited would resonate
but depending if its eigenfrequency is above or below
the critical frequency it could radiate efficiently or not.
Modes that do have an eigenfrequency above the critical
frequency are candidates to participate to the overall
sound of a trombone when it is played, because even
if they are slightly excited, they would radiate sound
power.
In the case of the trombone bell, it is shown on figure 3
that for the low frequency modes such as (2, 3) or (3, 3)
the eigenfrequency, indicated with a thick vertical line, is
not located in the efficient part of the curve. This imply
that these modes might be excited when the trombone is
played but are not likely to radiate a lot of sound power.
On the contrary, more high frequency modes like (10, 6)
are candidates to radiate sound power when excited, as
the eigenfrequency is close to the efficient part of the

curve.

4 Conclusion

It is shown that the eigenmodes of a trombone bell could
be classified using two indexes : a longitudinal index p,
corresponding to the number of nodal circles along the
bell, and a circumferential index m, corresponding to
the number of nodal meridians around the bell. These
eigenmodes when excited could participate to the overall
sound of the trombone if their radiation efficiency is high
enough. It is shown that using a model of equivalent
monopoles for each mode of the bell, it is possible to
compute the radiation efficiency of each mode. This
radiation efficiency can be used to discriminate between
modes that would not radiate efficiently even if excited
and modes that are efficient.
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