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In this study, we investigate the band-gap and propagation properties of acoustic waves in two-dimensional (2D) 
phononic crystal plates that consist of piezoelectric material by employing a revised full three-dimensional (3D) 
plane wave expansion (PWE) method and finite element method (FEM). The considered structures are periodic 
air-hole array in a zinc oxide plate. To apply the PWE method efficiently and to the piezoelectric solids, the 
equations governing the piezoelectric wave propagation are considered, and Fourier series expansions are 
performed not only in the 2D periodic plane, but also in the thickness direction for an imaginary 3D periodic 
structure by stacking the phononic-crystal plates and uniform vacuum layers alternatively, In the investigated 
piezoelectric phononic plates, large full band gaps are found. On the other hand, analyses by FEM using Bloch 
periodic boundary conditions is also employed to compare the results from the PWE method and to serve as a 
numerical tool for a more detailed study. Effects of lattices and thickness of the phononic plate on the full band 
gaps are discussed as well. 

1 Introduction 

In recent years, there has been an increasing interest in 
studying the properties of acoustic wave propagation in the 
composite materials, called phononic crystals (PCs), whose 
mass densities and elastic coefficients are periodically 
modulated in space. The interest in these materials mainly 
arises from that they can give rise to complete acoustic stop 
bands, which are analogous to the photonic band gaps for 
optical or electromagnetic waves in photonic crystals and 
may find many promising applications to engineering such 
as acoustic wave guiding, filtering, and vibration shielding 
[1, 2]. In addition to those phononic structures dealing with 
the bulk acoustic modes that travel in the interior of the 
medium and the acoustic modes localized near a truncated 
free surface of the two-dimensional periodic plane of the 
structure [3-5], very recent studies show that another 
worthwhile category of phononic-crystal structures would 
be the periodic plates of finite thickness whereby the Lamb 
waves can propagate in [6-9]. On the other hand, it is worth 
noting that Lamb modes have been important in a variety of 
applications, such as characterization of elastic properties 
of thin films, resonators, and sensing applications. For 
periodic plate structures, some released experiments [6] and 
theoretical work [7, 8] have demonstrated the existence of 
directional and complete band gaps of Lamb waves, 
respectively; these demonstrations may also facilitate the 
usages of band-gap materials from those conducted by bulk 
and surface acoustic modes to the Lamb-wave modes in 
phononic plate structures. Moreover, Lamb waves are 
guided waves and well-confined in the thickness direction. 
As a result, the two-dimensional (2D) phononic plates can 
be expected to serve the same properties of a forbidden 
band for Lamb modes as a three-dimensional phononic 
crystal for bulk acoustic modes, in a much more 
unsophisticated way.   
Among the existing studies, a lot of theoretical methods, for 
instance, plane wave expansion (PWE) method, multiple-
scattering theory (MST), finite element method (FEM), and 
finite-difference time-domain (FDTD) method [10], have 
been successfully applied to analyze the bulk acoustic 
waves in infinite phononic crystals; however, it is not 
always a straight forward task to adapt these methods for 
phononic plate problems. Based on the classical plate 
theory and three-dimensional equations of motion with 
suitable boundary conditions, respectively, the PWE 
method is used to address the phononic plate problems [11, 
12]. Applying Bloch theorem of a periodic medium to the 
FEM formulation, the frequency band structures of Lamb 

waves in phononic plate consisting of quartz inclusions 
arranged periodically in an epoxy host were calculated and 
analyzed [8]. Recently, the Mindlin’s plate theory based 
PWE method has been developed to analyze the frequency 
band structures of lower-order Lamb modes in lower bands 
for 2D non-piezoelectric phononic plates [9]. As well as, a 
full 3D PWE method is modified by considering an 
imaginary 3D periodic layered structure to analyze the 
waves in phononic crystal plate [13, 14]. 
In this paper, we derive a full 3D PWE method for 2D 
phononic plate containing constituents with piezoelectricity. 
Similar to the idea by considering an imaginary 3D periodic 
layered structure in the Fourier expansion, the formulation 
of piezoelectric version is proposed. Moreover, FEM model 
is also applied to serve a more detailed study. The plate 
considered and studied is made of zinc oxide film with a 
periodic air-hole array. 

2 Methods of Calculation 

2.1 Plane wave expansion method 

Consider a phononic crystal plate with thickness h as shown 
in Fig. 1, which is composed of an array of cylindrical 
inclusions A periodically filled in an infinite matrix B. 
Moreover, in order to apply the full 3D PWE method to 
phononic plates, the phononic plate is placed on a uniform 
layer C of thickness H that will be taken as a vacuum layer 
in the PWE calculation. Such a system is then assumed to 
be periodically stacked along the thickness direction (i.e., 
the z direction) to form an imaginary three-dimensional 
periodic structure. The period l along the z-direction is, 
therefore, l=h+H. As a result, the traction-free boundary 
conditions and continuity of the electric displacement at the 
up and down surfaces of the phononic plate are implicitly 
satisfied in the full 3D PWE formulation.  
 
 
 
 
 
 
 
FIG. 1 Unit cell of an imaginary 3D periodic structure by 
stacking a phononic plate and a uniform layer in the PWE 
method. 
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The governing field equations of acoustic wave propagation 
in a piezoelectric solid are given by 

 k
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where uj is the displacement and φ  is the electric potential. 
ρ , cijkl, eikl, and ijε  are position-dependent mass density, 
elastic stiffness, piezoelectric constants, and permittivity, 
respectively. Since the imaginary structure is 3D periodicity 
in space now, the displacements and electric potential 
satisfy the Bloch theorem that can be expressed as follows: 

 ( )i i tj
ju A e + ⋅ − ω=∑ G k r

G
G

,  (3) 

  ( )4 i i tA e + ⋅ − ωφ =∑ G k r
G

G
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where k=(kx, ky) is the Bloch wave vectors in the 2D first 
Brillouin zone, and r=(x, y, z) and G=(Gx, Gy, Gz) are 3D 
position vectors and reciprocal lattice vectors, respectively. 
Moreover, spatial distributions of the material properties 
can be expanded in the Fourier series, as 

 ( ) if f e ⋅= ∑ G r
G

G
r ,  (5) 

where the function f is any one of the position-dependent 
material properties. The Fourier coefficients of the material 
properties can be evaluated by the formula  

 ( )1

c

i
c V

f V f e dV− − ⋅= ∫ G r
G r ,  (6) 

where Vc is the volume of a unit cell of the imaginary 3D 
periodic structure. Substitution of Eqs. (3), (4), and (5) into 
Eqs. (1) and (2) leads to a linear system of equations in the 
matrix form:  
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Note that the summations of the reciprocal lattice vectors in 
Eqs. (3), (4), and (5) have to be truncated to obtain a finite-
dimension square matrix L. In practicing the numerical 
calculations, the z-component of G is separated as G=(G∥, 
Gz), where G∥ is 2D a reciprocal lattice vector, dependent 
on the lattice symmetry of the phononic plate, and the z 
component of G is 2 /zG n lπ= , ( 0, 1, 2,...)n = ± ± .  

To give an explicit expression of the Fourier coefficient for 
the imaginary 3D structure, Eq. (6) can be rewritten as  
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In this form, we set the interval of the integration to 
integrate over one unit cells that is symmetric with respect 
to the x-y plane, which can avoid the algebraic operation of 
the complex numbers, and the function fpc is the distribution 
of material properties in the 2D phononic-crystal plate. The 
final result is given by  
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when ≠G 0  and 0zG ≠ ,  
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when =G 0  and 0zG ≠ ,  
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when ≠G 0 and 0zG = , and 

 1 12 2C pcf l Hf l hf− −= +G  (11) 

when =G 0 and 0zG = . In the above expressions, r0 is 
the radius of the inclusions in the phononic plate, and  
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for a square lattice, 
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for a honeycomb lattice, and 

 ( ) ( )sin2 z
z

z

G zzS z
l G z
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where Ac is the area on the x-y plane of a unit cell of the 
phononic plate, a is the distance between the centers of two 
nearest cylinders which is referred to as the lattice constant 
of a honeycomb lattice, and J1 is the Bessel function of the 
first kind. 

Finally, the eigenfrequency of the phononic plate mode can 
be solved by examining the condition 

 ( )det 0=L  (14) 

In the following calculations, we will consider two kinds of 
lattices that can open up full acoustic band gaps for an air-
solid phononic crystal: square lattice and honeycomb lattice 
(as shown in Fig. 2). 
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FIG. 2 Square lattice and honeycomb lattice and their 
corresponding definition of lattice constant.  
 

2.2 Finite element method 

In this study, analyses by using the finite element method is 
employed in order to compare the results obtained from the 
full 3D PWE method. We use the COMSOL MULTIPHYSICS 
commercial software to carry out the calculations of FEM. 
In the FEM model, a unit cell of the phononic-crystal plate 
is constructed, and, according to the Bloch theorem, the 
mechanical displacement field and electric potential of a 
monochromatic wave obey the following conditions on the 
boundary of the unit cell  

 ( ) ( ) ( )expj mp j mpu u i+ = ⋅r R r k R  (15) 

 ( ) ( ) ( )expmp mpiφ + = φ ⋅r R r k R  (16) 

where Rmp is a vector displaced by a 2D period of the lattice 
multiplied by an arbitrary pair of integers (m, p) in the 
spatial position, and k is the Bloch wave vector confined in 
the first Brillouin zone. With the conditions (15) and (16) 
applied to the unit cell, the eigenfrequency is then obtained 
by solving the piezoelectric wave problem of the model. 
Examples of the meshed unit cells of the phononic-crystal 
plates with square and honeycomb lattices are shown in Fig. 
3, respectively.  
 
 
 
 

      
(a)                                          (b) 

 
FIG. 3 Examples of the meshed unit cells of the phononic-
crystal plates with the (a) square lattice and (b) honeycomb 
lattice in the FEM models. 
 

3 Zinc-Oxide Phononic Crystal Plate 

3.1 Acoustic band structures 

We consider phononic-crystal plate consisting of a periodic 
air-hole array in a ZnO film. The material constants of ZnO 
used in all the calculations are listed as follows: ρ =5680 
kg/m3, c11=209.7GPa, c33=210.9GPa, c44=42.47GPa, c12= 
121.1Gpa, c13=105.1Gpa, e15=-0.48 C/m2, e31=-0.573 C/m2, 
e33=1.32 C/m2, 11ε =75.7pF/m, 33ε =90.3pF/m.  
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FIG. 4 Acoustic band structures of waves in phononic-
crystal plates composed of a square-lattice air-hole array in 
a zinc oxide film. (a) PWE method. (b) FEM model.  
 
Figure 4(a) and (b) show the acoustic band structures of 
ZnO phononic-crystal plate with a square lattice calculated 
by using the full 3D PWE method and FEM model, 
respectively. The lattice constant a is 1.00um. The radius of 
the air hole and plate thickness are r0=0.47um and 
h=0.45um, respectively. The filling ratio of air is, therefore, 
F=0.694. Moreover, the thickness of the uniform vacuum 
layer assumed in the PWE calculation is 2.00um, which is 
enough to segregate the influences of the waves from the 
neighboring phononic plates. In the figures, the results by 
the two methods exhibit good agreement. In the full 3D 
PWE method, 81 Fourier terms in the expansions (i.e., 81 
reciprocal lattice vectors or plane waves) are used in the 2D 
plane (i.e., x-y plane), and 5 plane waves are used along the 
z-direction.  In the FEM model, 3643 tetrahedral elements 
are meshed for the unit cell. The full acoustic band gap is in 
the frequency range from 1.4GHz to 1.75GHz. The relative 
band-gap width, therefore, is about 22%.  Figure 5 shows 
the vibrations of band-edge modes at the lower-edge (i.e., 
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1397 MHz at X point) and upper-edge (i.e., 1750 MHz at 
Γ  point) frequencies of the full band gap. At the lower-
edge frequency, the most of the energy is localized on the 
up and down surfaces of the plate; however, at the upper-
edge frequency, the energy is concentrated in the four ribs 
of the structure. 

         
(a) 

(b)        
 
FIG. 5 Band-edge plate modes. (a) The mode at 1397 MHz 
of the lower edge and (b) the mode at 1750 MHz of the 
upper edge of the full band gap of the square lattice. 
 
Figure 6 shows the acoustic band structure for the case with 
a honeycomb lattice calculated by the FEM model with 
about 6500 tetrahedral elements meshed. For this plate, the 
lattice constant is a=1.00 um, the radius of air hole is 
r0=0.45 um (F= 0.490), and the plate thickness h=1.00 um. 
A wide full band gap ranges from 0.8GHz to 1.16GHz. The 
relative band-gap width is about 36.7%. Figure 7 shows the 
vibrations of band-edge modes at the lower-edge (i.e., 801 
MHz at Γ  point) and upper-edge (i.e., 1187 MHz at K 
point) frequencies of the full band gap. At the lower-edge 
frequency, the most energy is localized on the up and down 
surfaces of the plate; however, at the upper-edge frequency, 
the energy is concentrated in two of the ribs of the structure.  
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FIG. 6 Acoustic band structure of waves in the zinc-oxide 
phononic-crystal plate with a honeycomb-lattice. 

            
(a) 

             
(b) 

 
 
FIG. 7 Band-edge plate modes. (a) The mode at 801 MHz 
of the lower edge and (b) the mode at 1187 MHz of the 
upper edge of the full band gap of the honeycomb lattice.  
 

3.2 Effect of plate thickness 

For a phononic-crystal plate structure, the plate thickness 
can also be dominated the open and width of the full band 
gaps. Figures 8(a) and (b) show the distributions of the full 
band gaps as a function of plate thickness h for the square 
lattice and honeycomb lattice, respectively. For the square 
lattice, the lattice constant and radius of holes are 1.00um 
and 0.47um, respectively, and for the honeycomb lattice, 
the lattice constant and radius of air holes are 1.00um and 
0.45um, respectively. The calculations are based on the 
FEM model. Note that more meshed elements in the model 
are needed to obtain a convergent result when the plate 
thickness is increased. In Fig. 8(a), two regions of band 
gaps are in the frequency-thickness diagram for the square 
lattice. The frequencies of band gaps are distributing in the 
range form 1180MHz to 1840MHz. This frequency range is 
in between the fundamental plate modes and their first 
folded bands, and the full band gaps is affect by the folded 
bands of the flexural mode and the modes with a cutoff 
frequency that are shifted by changing the plate thickness. 
In Fig. 8(b), the distributions of the full band gaps are much 
more complicated for the honeycomb lattice. The region of 
the full band gap is divided into five areas by shift of the 
flexural bands and cutoff-frequency modes as the plate 
thickness changes in the diagram. Moreover, the band-gap 
frequencies are in the lower frequency range (about from 
790MHz to 1420MHz) than that of the square lattice in 
spite of their same value of the lattice constant a in the 
corresponding plate thickness.  
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FIG. 8 Band-gap distributions as a function of the plate 
thickness h. (a) Square lattice with r0=0.47um; (b) 
honeycomb lattice with r0=0.45um. 

Conclusion 

By utilizing the full 3D PWE method and FEM, we studied 
the acoustic band structures and full band gaps of acoustic 
waves propagating in piezoelectric phononic crystal plate. 
The plate is composed of a periodic air-hole array in a ZnO 
film. The revised formulation of PWE method applied to 
the plate structure is derived by considering an imaginary 
3D periodic structure that stacks the phononic plates and 
uniform vacuum layers alternatively. In the plates, two 
lattices are considered in this study, i.e., the square lattice 
and honeycomb lattice in which both exhibit wide full band 
gaps according to the theoretical calculations. Comparison 
of the calculated results respectively by the PWE method 
and FEM model also shows good agreement. Finally the 
effect of the plate thickness on the full band gaps is 
discussed for the two lattices, respectively. For the square 
lattice, the band-gap frequencies appear at higher frequency 
range, while the full band gaps are in the lower frequency 
ranges for the honeycomb lattice.   
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