ACOUSTICS2008/1789 Cavitational activity in bacterial biofilms exposed to 1 MHz ultrasound

Erich Everbach^a, Roby Velez^a and Amy Vollmer^b

^aSwarthmore College, 500 College Avenue, Engineering Department, Swarthmore, PA 19081, USA ^bSwarthmore College, 500 College Avenue, Biology Department, Swarthmore, PA 19081, USA

An exposure system was previously developed to quantify destruction of bacterial biofilms by 1 MHz c.w. ultrasound at 0.8 MPa peak-to-peak acoustic pressure amplitude (JASA 122(5):3052, 2007). Bacterial killing is quantified via confocal microscopy using florescent E. Coli and image processing. Recently, a passive detector of inertial and stable cavitation was included, relying upon the presence and character of acoustic emissions. The detector, a PVDF array placed on the microscope slide forming the base of the exposure chamber, produces a proxy measure of cavitational activity during ultrasound exposure. Acoustic pressure thresholds for biofilm destruction and cavitational activity suggest that inertial and stable cavitation both play a role in biofilm destruction by ultrasound.