A low-noise biomimetic differential microphone

Ronald Milesa, Quang Sua, Weili Cuia, Stephen Jonesa, F. Levent Degertekinb, Baris Bicenb, Caesar Garciab and Neal Hallb

aState University of New York, PO 6000, Vestal Parkway East, Binghamton, NY 13902-6000, USA
bGeorgia Institute of Technology, G. W. Woodruff School of Mechanical Engineering, 801 Ferst Dr. NW, Atlanta, GA 30332-0405, USA

A miniature differential microphone is described that has a noise floor that is substantially lower than that of existing devices of comparable size. The sensitivity of a differential microphone suffers as the distance between the two pressure sensing locations decreases, resulting in an increase in the input sound pressure-referred noise floor. In the microphone described here, the two sources of microphone internal noise, the diaphragm thermal noise and the electronic noise, are minimized by a combination of novel diaphragm design and the use of low-noise optical sensing. The differential microphone diaphragm measures 1 mm by 2 mm and is fabricated out of polycrystalline silicon. The diaphragm design is based on the coupled ears of the fly Ormia ochracea. The sound pressure input-referred noise floor of this miniature differential microphone has been measured to be less than 36 dBA.