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Abstract
To reduce speech degradation in reverberant environments, we previously proposed a modulation

transfer function (MTF) based method of speech restoration. The room impulse response (RIR) in
this restoration does not need to be measured at any time since we modeled the power envelope of the
RIRs as an exponential decay function. Speech is assumed to be temporal modulated with white noise
carrier in all sub-bands. We have tested how effective this method was as a front-end for ASR systems
in artificial and real reverberant environments. Reverberant speech signals were created by simply
convoluting clean speech signal (AURORA-2J database) with the artificially produced or real RIRs. A
method based on the auditory power spectrum was used as a baseline for comparison. Compared with
the baseline, the proposed method for artificial reverberant environments produced a 35.67% relative
improvement in the error reduction rate (on average, for reverberation times from 0.2 to 2.0 s), and
for real reverberant environments (43 RIRs), it produced a 25.78% relative improvement in the error
reduction rate. The results demonstrate that our new approach can improve the robustness of ASR
systems in reverberant environments, and it performs better than conventional methods.

1 Introduction

It is well known that reverberation smears significant
features of speech so that recognition rates (RRs) of
automatic speech recognition (ASR) systems are drasti-
cally reduced as reverberation time (RT) increases [1, 2,
3]. Achieving robust speech recognition in reverberant
environment (RE) is therefore an important issue.

Reverberation can be regarded as convolution pro-
cessing of speech signal and room acoustics. In a RE, the
temporal and spectral structure of speech is distorted by
room reverberation characteristics. It is difficult to dis-
tinguish clean speech signals in a RE by using the sta-
tistical properties of the original and of the reverberant
speech signals. Although the traditional methods for re-
ducing additive noise based on the statistical properties
such as spectral subtraction have widely used to enhance
smeared speech, these do not work well in REs.

Several algorithms for reducing reverberation distor-
tion have been proposed. The two most well known are
cepstral mean normalization (CMN) [4] and RASTA fil-
tering [5]. These can effectively reduce the distortions
caused by short-term convolution channels. In real room
acoustics, the RT is far longer, and the properties of REs
are that they are both time and spatially variant.

Several dereverberation algorithms using single or
multi microphones have been proposed for solving the
room-reverberation problem. The basic principle of dere-
verberation has been to measure the room impulse re-
sponse (RIR), and then use inverse filtering to obtain
dereverberated speech [6]. However, these methods re-
quire the RIRs for each dereverberation to be remea-
sured if room acoustics have changed. One possible way
to utilize blind speech dereverberation is to use speech
characteristics. For example, the harmonic structure of
speech can be used [7]. This method needs the funda-
mental frequency from reverberant speech to be accu-
rately estimated, which is difficult [8], and it does not
seem to restore the consonant parts in speech.

In this study, we utilized the characteristics of speech
and the RIRs for speech dereverberation. Speech signals
are highly temporally modulated, and most of their in-
telligibility information is encoded in temporal modula-
tion envelopes in each sub-band [9]. This means that
we need to restore the temporal modulated envelope of
clean speech from the reverberant speech for recogni-
tion. We previously proposed a sub-band power enve-
lope inverse filtering algorithm based on the modula-
tion transfer function (MTF) [10, 11] for dereverberat-
ing speech signals [12, 13]. It was designed to be used

as a front-end processor for automatic speech recogni-
tion. Correlation and SNR measurements showed that
it improves power envelope restoration accuracy [12, 13],
and testing showed that it restores speech signals with
a high level of speech intelligibility [14]. We have now
tested its ability to recognize Japanese digital speech in
both artificial REs [15] and real REs [16].

2 MTF-based sub-band power en-
velope restoration method

2.1 Model concept

The MTF concept was proposed by Houtgast and
Steeneken [10] to account for the relationship between
the transfer function in an enclosure in terms of input
and output signal envelopes and the characteristics of
the enclosure such as RE. This concept was introduced
as a measure in RIRs for assessing the effect of enclosure
on speech intelligibility [10]. The MTF is obtained [10,
11] as

M(ω) =

∣∣∣∣∣
∫∞
0 h2(t)ejωtdt∫∞

0 h2(t)dt

∣∣∣∣∣ =

[
1 +

(
ω

TR

13.8

)2
]− 1

2

, (1)

where ω is the radian frequency and the RIR, h(t), is

h(t) = eh(t)n1(t) = a exp(−6.9t/TR)n1(t), (2)

where eh(t) is the exponential decay temporal envelope,
a is a constant amplitude, TR is the RT defined as T60,
and n1(t) is a random white noise as a random vari-
able. Eq. (2) is a well-known stochastic approximation
of the RIR. For a dominant frequency in the temporal
envelope, Eq. (2) can be regarded as the modulation
index, i.e., the degree of the relative fluctuation in the
normalized amplitude with respect to the modulation
frequency. On the basis of this characteristic, TR can be
predicted from a specific frequency by using the MTF.

We model what effect of room acoustics had on speech
signals on the MTF concept. The convolution distortion
in sub-band representation is written as

yn(t) = xn(t) ∗ h(t), n = 1, 2, · · · , N, (3)

where yn(t) and xn(t) correspond to the reverberant and
clean speech signals in the sub-band, n is the sub-band
index, and N is the total number of sub-bands. Using
the temporal modulation properties of the speech signal,
we model the sub-band speech, xn(t), as

xn(t) = ex,n(t)n2(t). (4)
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Figure 1: Sub-band power envelope method of inverse
filtering based on the MTF concept.

The temporal envelope of sub-band n is ex,n(t). Here,
n1(t) and n2(t) are mutually independent random vari-
ables that satisfies 〈nk(t)nk(t − τ)〉 = δ(τ), k = 1, 2,
where < · > is the ensemble average operator. From
these, we can calculate the power envelope of yn(t) as〈

y2
n(t)

〉
= e2

y,n(t) = e2
x,n(t) ∗ e2

h(t). (5)

This equation shows that the restoration of e2
x,n(t) can

be completed by deconvolution of e2
y,n(t) with e2

h(t).
These signals are transformed a continuous signal into a
discrete signal on the basis of sampling theorems, such
as e2

x,n[m], e2
y,n[m], and e2

h[m] (m is the number of sam-
ples). Ex,n(z), Ey,n(z), and Eh(z) are the z-transforms
of e2

x,n[m], e2
y,n[m], and e2

h[m]. The input-output rela-
tionship for deconvolution can be represented as

Ex,n(z) =
Ey,n(z)

a2

{
1 − e

− 13.8
TR,n·fs z−1

}
, (6)

where fs is the sampling frequency. e2
x,n[m] can be re-

stored using the inverse z-transform of Ex,n(z). In Eq.
(6), we only need to estimate parameters TR,n and a.
Here, the parameter, TR,n, is assumed to be a function
of n since it is dependent on the sub-band, and is inde-
pendently estimated from each sub-band.

2.2 Algorithm implementation

The algorithm for inverse filtering the sub-band power
envelope was developed on the basis of the analysis above.
The processing scheme for inverse filtering the sub-band
power envelope is outlined in Fig. 1. In the processing
scheme, observed signal y(t) is decomposed into a series
of frequency sub-bands; envelope detectors then extract
temporal modulation envelopes e2

y,n(t). Considering the
co-modulation characteristics of speech signals in sub-
bands [12], we deliberately designed a series of FIR-type
band-pass filters with a constant bandwidth (100 Hz was
chosen in this study) for the decomposition. Thus, this
filterbank is referred to as a constant-bandwidth filter-
bank (CBFB) in this paper. The extracted envelopes
are used for inverse filtering e2

y,n(t), which is controlled
by estimated parameters TR,n and a. The final output is
the restored or dereverberated power envelope, ê2

x,n(t),
for all sub-bands. The implementation is as follows.

2.2.1 Sub-band power envelope extraction

The power envelopes in the sub-bands are extracted by
low-pass filtering the Hilbert transform of the sub-band
signals [12, 13]:

êy,n(t)2 = LPF
[
|yn(t) + jHilb(yn(t))|2

]
, (7)

Smoothing 
 + Frame integration
 + Log compression

Smoothing 
 + Frame integration
 + Log compression

DCT

Feature vector

Restored 
   power envelopes

#1

#n

#N

ex,1(t)

ex,n(t)

ex,N(t)

^

^

^

2

2

2

Figure 2: Extraction of speech features based on re-
stored power envelope in all sub-bands.

where LPF[·] is a low-pass filtering operator, and Hilb(·)
is the Hilbert transform. We set the cut-off frequency of
the low pass filtering to 20 Hz to retain most of the im-
portant modulation information for speech perception.

2.2.2 Parameter estimation

The TR,n and a (referred to as T̂R,n and â) in Eq. (6)
are estimated using Unoki et al.’s formulas [12]

T̂R,n = max

(
argmin

TR,n

∫ T

0

∣∣∣min
(
ê2

x,n,TR,n
(t), 0

)∣∣∣ dt

)
,

(8)

â =

√
1/

∫ T

0

e
− 13.8t

T̂R,n dt, (9)

where T is signal duration and ê2
x,n,TR,n

(t) represents the
candidates of the restored power envelope as a function
of TR,n. The RT is constrained as TR,min < TR,n <
TR,max. These are the lower and upper bounds of TR,n.

2.2.3 Power envelope inverse filtering

After the power envelopes (e2
y,n(t)) and the parameters

of the RIR (T̂R and â) are obtained, the power envelopes
are inverse filtered using Eq. (6) to restore the power
envelopes of the dereverberated speech in the sub-bands
(e2

x,n(t)). Here, the restored power envelope in a sub-
band is denoted as ê2

x,n(t).

3 ASR for reverberant speech

3.1 Feature extraction

We tested the effectiveness of the proposed algorithm
for dereverberation as a front-end processor for ASR
of reverberant speech. We used clean speech from the
AURORA-2J database as speech material [17], and used
8, 840 clean speech sentences to train the acoustic mod-
els. We used 1, 001 clean speech sentences to produce
reverberant speech to test recognition in REs by con-
volving the speech signals with the RIRs. We used the
fs = 8 kHz and 40 sub-band channels (N = 40) to cover
the frequency region from 0 to 4 kHz.

In Fig. 2, the first block for a smoothing and it
is comprised of frame integration and log compression.
Because the inverse filtering of power envelope is a high-
pass, low-pass filtering with a forgotten parameter, λ
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was used to smooth the envelope dips:

ēx,n[m] = λēx,n[m − 1] + (1 − λ)êx,n[m], (10)

where êx,n[m] is the original restored sub-band power
envelope, and ēx,n[m] is the smoothed output. In this
paper, we set λ to 0.98. To integrate the frames, we used
a 32-ms frame length with a Hamming window and a
frame rate of 16-ms. After the integrated spectrum was
obtained, log compression was carried out. The DCT
was used for dimensional decorrelation. The first 12 di-
mensions of the decorrelated log power spectrum were
used. Combining the log power energy, we obtained 13-
dimensional static feature sets. Together with their first
and second order delta dynamic values, 39-dimensional
feature vectors were formed. HTK [18] was used for
training the HMM acoustic models. The acoustic mod-
els were configured the same as in the AURORA-2J ex-
periments [17].

For comparison, we also tested the performance of
conventional methods of feature extraction under the
same conditions. One is to use the standard feature rep-
resentation, i.e., the Mel Frequency Cepstral Coefficient
(MFCC) representation. Another is to use the audi-
tory cepstral feature vector on the basis of the sub-band
power envelopes. In this representation, a gammatone
auditory filterbank an equivalent rectangular bandwidth
(ERB) was used. This can be regarded as a constant-
Q filterbank (CQFB) so that this feature vector is re-
ferred to as CQFB in this paper. Two conventional post-
processing methods, i.e., CMN [4] and RASTA filtering
[5], were also used in this paper to deal with convolution
distortion. Consequently, the features extracted are de-
noted here as Fea CMN, Fea RASTA, and Fea IMTF
(where “Fea” is either CQFB or CBFB).

3.2 Recognition experiments in artificial
REs

We tested the recognition of our proposed method in
artificial REs by using 1, 001 clean speech sentences to
produce reverberant speech. The speech signals were
convolved with the artificial RIRs (produced using Eq.
(2)) with RT of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6,
1.8 or 2.0 s. In total, we used 1, 001 clean speech signals
and 10, 010 (= 1, 001× 10) reverberant speech signals.

We simulated speech recognition using many types of
feature: CQFB, CBFB, CBFB CMN, CBFB RASTA,
and CBFB IMTF. The recognition for short RTs (TR <
0.2 s) was best as can seen from the magnified plot in
Fig. 3b. The recognition rate (RR) decreased as the RT
increased; the rate of decrease was especially high when
the RT was longer (TR > 0.2 s). When TR < 0.2 s, all
the features performed well. The CBFB-based feature,
performed better for TR > 0.15 s, and a little worse for
TR < 0.15 s than the CQFB. Also as shown in Fig.
3, CBFB RASTA performed even worse than CBFB
alone. The CBFB CMN performed a little worse or al-
most the same as the CBFB alone (except for TR < 0.2
s). However, the CBFB IMTF consistently improved
the performance of CBFB alone. We also tested how
well CQFB-based feature performed. They performed
worse than using CBFB alone. Consequently, we did
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Figure 3: Comparative evaluations of reverberant
speech recognition rates: (a) whole evaluation and (b)
zoom-up plot in range from 0.0 to 0.2 s.

not use CQFB-based feature for comparison in later ex-
periments. In addition, we found that adding CMN or
RASTA processing to either CQFB or CBFB did not im-
prove the RR in our experiments, and sometimes even
decreased performance. Therefore, in this paper, the
performance of CQFB is used as a baseline.

A relative improvement (RI) in the RR was adopted
to show the improvement in recognition in different REs
from different baselines, which is defined as

RI =
(TRR − BRR)

(1 − BRR)
× 100 (%), (11)

where “TRR” and “BRR” denote the testing RR and
baseline RR. Based on this definition, the proposed CBFB
and CBFB IMTF derived RIs of 28.64% and 35.67% on
average (for 0.2 s < TR < 2 s) in the error reduction
rate compared with CQFB.

3.3 Recognition experiments in real REs

We then tested our method on speech recognition in
many real REs (e.g. 43 halls, rooms, and theaters [16])
under various conditions. The reverberant speech sig-
nals were obtained from the convolutions between clean
speech signals and the RIRs (the sampling rate of the
impulse responses of the environments were sub-sampled
to 8 kHz to adapt to the sampling rate of the speech
database). The speech corpus, features, and acoustic
models were the same as those used for the artificial
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REs described in previous subsection. The characteris-
tics of the REs and the RRs are listed in Table 1.

Rooms and halls constructed of different materials
and with different configurations have vastly different
reverberant characteristics. As listed in Table 1, the RTs
for rooms and halls ranged widely from 0.36 to 3.62 s.
The middle-six columns list RRs with the highest rates
for each marked in bold. For comparison, the tenth
and eleventh column also list RRs of CBFB IMTF with
CMN and RASTA. The rightmost column indicates the
relative improvements in the error reduction rate of the
CBFB IMTF feature compared with that of the CQFB
feature. The CQFB feature performs almost the same
as MFCC or slightly better (on average).

The CBFB-based features outperformed the CQFB-
based features. The CBFB IMTF based feature, had
the highest recognition in almost every case. On av-
erage, CBFB and CBFB IMTF had relative improve-
ments of 15.74% and 25.78% compared with that of
CQFB. The table also lists how the differences in acous-
tic characteristics of the various environments affected
the RR. Although CBFB CMN and CBFB RASTA had
no improvements in performance compared with that
of CBFB alone, a combination of IMTF with CMN
and RASTA had good improvements. In most cases, it
was found that CMN interacts to make an improvement
with IMTF. There was almost no degradation in speech
recognition for the meeting room, wooden house, living
room, or movie theater (RR > 90%) because these REs
had been designed to minimize reverberant properties.

4 Conclusion

Our analysis and experiments demonstrated that our
MTF-based sub-band power envelope extraction and in-
verse filtering algorithm improves the robustness of speech
recognition for reverberant speech. The results revealed
that: (1) Constant-Q band-pass processing or MFCC
had no advantages for improving ASR in REs; (2) Con-
sidering the exponential decay properties of a RIR in a
RE and the temporal modulation properties of speech,
we can estimate the sub-band temporal power envelope
of speech to some degree without having to measure
the RIRs, thereby improving the ASR of reverberant
speech; (3) in real REs, the proposed estimates of the
sub-band temporal envelope with inverse filtering based
on dereverberation consistently improves ASR; and (4)
although CBFB CMN had no improvement compared
with that of CBFB alone, a combination of CBFB IMTF
with CMN can improve the RRs of CBFB IMTF.

Comparing the RR of CBFB IMTF and CBFB in
Table 1, we find that adding inverse filtering to CBFB
does not greatly improve the RR. The RR still low for
many reverberant conditions. This suggests that we
need to reconsider how some things are handled from
both model and implementation aspects. In our experi-
ments, reverberant speech was obtained by manual con-
volution between the speech and RIRs in artificial and
real REs. However, we need to consider real reverberant
speech, which should be recorded in a RE. In addition,
apart from convolution-distortion, additive noise in real
REs may cause speech to degrade. In the future, we will
extend our method to deal with these problems.
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Table 1: Comparison of reverberant speech recognition rates (%) in actual reverberant environments. IRdata No.
indicates File No. in SMILE2004 [16]. The reverberation time, TR, was determined as an average from all TRs on
the transfer function at 125 Hz to 8 kHz in octave frequencies. The “RI CQFB” and “RI CBFB” mean the relative
improvement in the error reduction rate of the CBFB IMTF feature compared with those of CQFB and CBFB features.
MPH: Multi-purpose hall; CCH: Classic concert hall; GSH: General speech hall, RB: Reflex board, AB: Absorptive
board, AC: Absorptive curtain.

Room condition RIR TR MFCC CQFB CBFB CBFB CBFB CBFB CBFB CBFB RI RI
(RIRs) No. (s) CMN RASTA IMTF IMTF IMTF CQFB CBFB

CMN RASTA

MPH 1 1 301 1.09 42.55 45.56 52.44 57.63 48.51 60.30 66.53 59.53 27.08 16.53
MPH 1 2 302 0.80 55.39 54.31 68.52 71.85 66.17 74.33 81.95 76.36 43.82 18.46
MPH 2 3 303 1.44 32.88 36.60 40.62 39.70 32.64 45.41 47.47 40.31 13.90 8.07
MPH 2 4 304 1.04 39.70 43.51 47.56 45.49 36.20 52.38 54.93 46.55 15.70 9.19
MPH 3 5 305 1.93 30.70 33.40 33.80 35.31 31.26 39.31 42.46 36.54 8.87 8.32
MPH 3 6 306 1.35 42.12 43.48 46.52 53.42 47.50 54.19 61.87 55.08 18.95 14.34
MPH 4 7 307 1.42 55.70 55.07 69.63 74.24 71.05 75.87 80.87 76.39 46.29 20.55
MPH 4 8 308 1.54 52.44 53.42 67.02 71.08 66.78 73.10 77.31 72.06 42.25 18.44
MPH 5 9 319 1.47 46.55 47.28 61.38 59.84 54.71 64.04 68.28 62.02 31.79 6.89
MPH 6 10 321 2.16 40.13 42.83 49.95 49.43 47.99 54.49 58.43 53.05 20.40 9.07
CCH 1 11 309 2.35 27.72 34.20 35.19 33.50 28.92 35.92 42.09 33.65 2.61 1.13
CCH 1 12 310 2.34 30.09 35.65 39.88 37.03 33.22 42.74 45.16 39.61 11.02 4.76
CCH 1 13 311 2.35 30.40 35.22 37.67 35.34 33.19 43.17 43.29 40.31 12.27 8.82
CCH 1 14 312 2.39 30.58 35.37 39.73 38.44 35.55 45.47 46.95 42.00 15.63 9.52
CCH 1 15 313 2.38 27.82 33.93 36.17 34.30 32.36 40.56 42.09 37.58 10.03 6.88
CCH 2 16 314 1.14 40.34 44.34 50.60 58.12 49.59 59.84 67.21 59.50 27.85 18.17
CCH 3 17 315 1.96 35.00 36.81 37.73 42.80 39.12 46.33 52.72 45.41 15.07 13.81
CCH 4 18 316 1.92 41.23 41.42 50.02 49.95 46.15 54.38 58.46 51.24 22.12 8.72
CCH 4 19 317 2.55 34.33 36.72 41.97 41.14 37.15 44.43 47.62 43.44 12.18 4.24
CCH 5 20 323 2.32 31.78 37.70 38.29 34.85 32.58 44.09 44.67 39.91 10.19 9.40
CCH 6 21 324 1.77 37.73 41.42 43.57 42.55 38.38 53.45 54.50 49.06 20.54 17.51
CCH 6 22 325 1.74 40.13 44.18 47.87 46.27 42.25 55.14 57.23 51.24 19.63 13.95
CCH 6 23 326 1.69 34.73 38.23 44.34 43.11 41.42 52.69 52.07 46.67 23.41 15.00
Lecture room 24 201 1.36 46.76 45.72 60.85 70.31 67.58 68.53 77.00 73.07 42.02 19.62
Theater hall 25 318 0.85 46.24 48.82 60.55 60.39 53.39 63.68 73.88 66.23 29.03 7.93
Meeting room 26 401 0.62 77.43 72.24 89.10 91.25 89.16 91.62 94.04 91.83 69.81 25.87
Lecture room 27 402 1.12 55.85 53.18 70.83 81.12 78.75 80.32 86.98 84.71 57.97 32.53
Lecture room 28 403 1.09 57.48 51.30 68.35 83.97 80.75 78.85 87.90 86.06 56.57 33.18
GSH 29 404 1.54 40.44 44.89 51.58 46.58 44.55 54.34 55.63 50.05 17.15 5.70
Church 1 30 405 0.71 57.35 56.95 70.34 76.60 72.43 77.56 85.91 82.28 47.87 24.34
Church 2 31 406 1.30 33.71 37.21 41.42 40.87 30.52 42.49 49.77 42.92 8.41 1.83
Event hall 1 32 407 3.03 27.51 31.19 33.40 33.40 30.80 36.87 42.22 31.07 8.25 5.21
Event hall 2 33 408 3.62 28.77 32.98 35.62 37.27 34.88 41.63 44.58 36.48 12.91 9.34
Gym 1 34 409 2.82 21.61 26.59 29.08 27.88 25.39 30.09 34.82 29.14 4.77 1.42
Gym 2 35 410 1.70 32.51 37.33 39.98 41.60 36.29 48.23 51.70 47.62 17.39 13.90
Living room 36 411 0.36 89.81 86.40 98.31 96.75 95.30 96.90 97.33 93.61 77.21 -83.93
Movie theater 37 412 0.38 88.36 84.22 93.49 95.95 92.85 93.18 97.21 93.61 56.78 -4.76
Antrum 38 413 1.57 35.19 36.91 39.70 43.97 36.08 48.60 52.96 46.61 18.53 14.76
Tunnel 39 414 2.72 28.52 25.05 25.33 26.76 35.06 33.87 46.46 28.46 11.77 11.44
Concourse 40 415 1.95 36.66 39.64 44.06 46.18 34.48 45.93 55.14 47.10 10.42 3.34
GSH 2 41 416 1.53 38.26 41.45 48.33 46.88 42.80 56.13 58.00 50.11 25.07 21.10
GSH 2 42 417 1.49 34.26 37.67 45.13 44.98 41.26 51.77 52.63 46.64 22.62 12.10
GSH 2 43 418 1.40 39.73 39.05 54.41 59.81 56.19 65.18 67.79 62.51 42.87 23.62

Note: 1 (with RB; capacity: 2, 000 m3), 2 (without RB), 3 (with RB; capacity: 5, 700 m3), 4 (without RB), 5 (with RB; capacity: 7, 200

m3), 6 (without RB), 7 (with AB; capacity: 12, 000 m3), 8 (without AB), 9 (capacity: 14, 000 m3), 10 (capacity: 19, 000 m3), 11 (capacity:

5, 600 m3), 12 (d = 6 m), 13 (d = 11 m), 14 (d = 15 m), 15 (d = 19 m), 16 (capacity: 6, 100 m3), 17 (capacity: 20, 000 m3), 18 (with

AC; capacity: 7, 100 m3), 19 (without AC), 20 (capacity: 17, 000 m3), 21 (1F front; capacity: 17, 000 m3), 22 (2F side), 23 (3F), 24 (with

flatter echo), 25 (capacity: 3, 900 m3), 26 (capacity: 130 m3), 27 (capacity: 400 m3), 28 (capacity: 2, 400 m3), 29 (capacity: 11, 000 m3), 30

(capacity: 1, 200 m3), 31 (capacity: 3, 200 m3), 32 (capacity: 28, 000 m3), 33 (capacity: 41, 000 m3), 34 (capacity: 12, 000 m3), 35 (capacity:

29, 000 m3), 36 (wooden, capacity: 110 m3), 37 (capacity: 560 m3), 38(capacity: 4, 000 m3), 39 (capacity: 5, 900 m3, length: 120 m), 40

(train station), 41 (1F front), 42 (1F central), 43 (balcony).
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