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The development of a passive sonar tracking system in real-time needs algorithms each time more accurate and
that can be able to follow rapid changes in the signal characteristics. In a bearings-only tracking problem, the
bearing model is a nonlinear function of the target states. Nowadays, methods that deal with nonlinear and non-
Gaussian estimation are receiving great attention. Particles filter is one of these methods. Particles filters are
Sequential Monte Carlo methods that represent the required probability density function as a set of random
samples. This present paper describes the particles filter application in the bearings-only tracking problem.
Simulated and real data of targets are displayed in energy versus bearing graphics obtained in an operational
naval environment. These data were used with the Sampling Importance Resampling algorithm (SIR). The
particles filter is formulated in Cartesian coordinates and then the result is transformed to modified polar
coordinates. Results are compared with Extended Kalman Filter (EKF) and the effectiveness and limitations of
SIR algorithm for tracking targets using a bearing/time record are examined.

Introduction

The problem of tracking a target using a history of noisy
bearing measurements requires nonlinear estimation
methods due to the fact that bearings are nonlinear function
of the parameters of location. This problem is also referred
as bearings-only tracking (BOT) or target motion analysis
(TMA) [1, 2]. From the many solutions proposed to this
problem, the more used are based on pseudo-linear
formulations and on the Kalman filtering [3]. These
methods are based on the assumption that the noise is
gaussian, which is not often the case in the underwater
environment, causing their performance to degrade rapidly.

With the advent of modern computers, traditional statistical
methods have taken a new direction. Several methods that
use intensive computation have been presented in the
literature for the treatment of non-gaussianity and
nonlinearity, and can be used, too, for the treatment of
problems of recursive nature and that require solutions in
real time. The particles filter (PF), whose principal idea is
the use of Monte Carlo simulation to implement bayesian
recursive filters, is one of these methods. The advantage of
this method is its ability to estimate any statistical needs
with few assumptions and can be applied to automated
processes in many different situations [4, 5, 6, 7].

The objective of this paper is to present a study of the
particles filter in the underwater target tracking problem
using bearings only. The work is organized as follows:
Section 2 shows the formulation of the target tracking
problem, Section 3 shows the methodology of particles
filter, Section 4, its application to data obtained in
simulated and real operational naval environment, and
Section 5, the conclusions and future works.

2 Problem Formulation

Geometric configuration for the target motion estimation
problem is shown in Figure 1, where (x,,y,) and (x,,y,)

are the coordinates of the platform and the target
respectively, B is the bearing of the target to the platform,
vandv  are the components of the velocity of the target,

a, is the angle between the north and the heading of the

platform and r is the distance between the platform and the
target. Consider that platform and target are in the XY
plane and that the target moves in a constant velocity and
on a fixed heading. The platform has its trajectory
consisting of some “legs”, i.e., segments with the same
heading and velocity.
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The components of the target position when the target
moves in constant velocity (constant heading and velocity)
during a time interval and in the same plane, can be given
by the following equations:

'xA (tl ) = 'xA (to )+ Ativa
yA(ti) yA(to)JrAtivyA
where At =L, The equation that associates positions

of platform and target to obtain the real bearings of the
target to the platform, B, is:

X4 (ti)_xP(ti)

yA(ti)_yP(ti)

The noisy bearing measurement of the target is:
B()=B(t,)+w(t,;)

where w(t,) is the noise.

th(ti)z

Y/ North

%4

i~

N

“}, Target trajectory

Fig. 1 —General scenario

The aim of the target estimation problem is to calculate the
target trajectory using noise corrupted bearing
measurements from a single observer. In real naval
applications, target’s course, speed and range are the
desired estimated parameters. Apparently this problem
seems to be simple but the bearings-only problem is not
easy to solve because the problem is inherently nonlinear.

3 Methodology

3.1 Bayesian Approach

In a general way, the tracking problem can be defined
considering that the evolution of the state sequence,

{x, e M"}, of a target can be represented by



X, = fz(xz—la“z—l)
fi i RTAR" > R”

evolution function and u, € R" is a sequence of zero mean

(D

where is the transition system

white noise, independent of past and current states and with
known probability density function (pdf). The measures,
which are obtained over time, are related to the state vector
equation through a measurement equation

Br=h () @
where £, :R"XR" — R? is the function of the measures

and w, e R" is another sequence of white noise with zero

mean, independent of the past states, and of the system
noise and with known pdf. It is considered that the pdf of
the initial state and the functions f; and %, are known.

In a bayesian approach, the target tracking problem
calculates the degree of belief of the current state given the
measures obtained at the moment [9]. The pdf of the current
states, given all the information possible, can be obtained
recursively in two stages: prediction and update. On the
prediction stage, the system model is used to obtain the
prior pdf of the state in the next time step by

p('xt|ﬂl:t71) = J‘p(xt|xt71)p(xt—l|ﬂl:t71 )dx,, (3)

considering that the pdf of that time is known. The
probabilistic model of the development of the state,

p(xt|xt_1) , which is a Markov model of the first order, is
defined by the system equation and the known statistics of

utfl 1 c., p(xz|xt—1) = ,[p(xt|xt—19ut—l)p(ut—1|xt—l)dut—l
Supposing p(u,_1|xt_1) = p(u,_;), we have

p(‘xt |‘xt—1) = J5(xt - ft—l (xt—l > ut—l))p(ut—l )dut—l
where o(e) is the Dirac function.

The update stage involves the measurement model in the
following way: given the measurement, the prior density
can be updated by the Bayes rules

_ p(Blx)px|B )

= 4
(BB @

p(x|Be.n B) = p(x)B)

where
BB =1 P(B|x)p(x|B.-)dx, Q)

depends on the conditional pdf of data, i.e., the probability
function, defined for the model of the measurements and

the known statistics of W, ,
P(B|x) =8B, =k (x,, w,)p(w,)dw,

In the update of the equation (4), the measure S, is used to

modify the forecast of the prior density from the previous
instant to get the desired posterior density of the current
state. The equations Eq.(3) and Eq.(5) constitute the formal
solution for the bayesian problem of recursive estimation
[8]. The integral of the equation (5) does not have a closed
analytical form. For many problems the solution of this
integral is very difficult. To avoid this obstacle, methods as
the Kalman filters consider that the models of the system
and of the measurements are linear and/or gaussian and that
the noise process is also gaussian, with known variances
and additives. However, in some problems these
considerations are not valid.
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3.2 Particle Filters

Methods that use intensive computation are based on the
Monte Carlo simulation (MC) to estimate the statistics of
interest, recalculating its value by using artificial samples
that are obtained by modifying the real samples. The main
idea of these methods is to represent the probability density
function of the state vector by a set of weighted random
samples that are updated and propagated by the algorithm.
The method provides an accurate representation and
equivalent pdf when the number of samples is large. The
method has the advantage of being applied to any type of
state or measurements. The fact of the stage of updating the
algorithm (bayesian rule) being implemented as a bootstrap
weighted means the method is considered also a bootstrap
filter [5, 10]. The bootstrap method idea is to use
resampling to obtain additional artificial samples and then
to extract information from these samples to enhance
inference. These samples are concentrated in areas of high
density of probability.

There are some types of particles filters: based on MCMC,
acceptance-rejection, and Importance Sampling. In this
work, we will present the Sequential Importance Sampling
algorithm - SIS, which is the basis of some particles filters
developed until the moment, and the Sampling Importance
Resampling algorithm — SIR.

3.2.1 SIS Algorithm

The principal idea of this algorithm is to represent the
posterior density for a set of weighted random samples (g, )
and to estimate the parameters of interest based in these
{xi,,q.:i=1,...,Ng} be a
set characterizing the posterior

samples and weights. Let =
sample measurement
density p(x,, | B,,) where {x},,i=0,...,Ni} is a set of
{qti:izls"'aNS}

Xo; =1x;,/ =0,...,1} is the set of all states until time t. The

auxiliary points with weights and

weights are normalized, Yq! =1. The posterior density in

Ne .
time t can be approximated by p(xo:t| B ) ~Yq S (xo:t - x(’):t).
i1

So we have an approximation of the discrete weighted true
posterior p(x0:t| ﬂl:t). In this case, the weights are chosen by
using the importance sampling. The importance sampling
technique consists in modifying the density p(x), D (x) , in
which the events related to the desired parameter occur
more frequently [5, 6]. Consider x’ ~ pm(x), i=1...,Ng

generated samples of the modified density. An

approximation of the weighted density is given by

plx)=Tq's(x—x")  where qiocL)Ci) is the
pn(x)

normalized weight of the particles.

The weights using sample xé;z obtained by modified

p(xi| i)

density  p,,(x,,|B,) are g =0t
' t ' pm (x0:t |ﬂ1:t )

In each iteration of the sequential case we will have
samples constituting an approximation for p, (x0:t71|ﬁ1:,71)
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and want to approximate p(x,, |f,,) with a new samples
set. If the modified density is chosen such that

pm ('xo:t | ﬂl:t) = pm (‘xt | xO:t—l’ﬂl:t—l)pm('xO:t—l | ﬂl:t—l)

then the samples p, (x| B.) can be obtained increasing
each existing sample x{, , ~ p,, (xm_1| ﬁ1::-1) with a new state
x/ ~p, (x,|x0:t_1, /’71;,_1)- The weight equation is the

p(B. 1 x)p(x) | x; )
Pn(x X . B)

following one: g/ =gq,

Considering  p,, (xt|x0:,_1, ﬂu)= D (x,|xt_1, ,6',) we have
modified the density dependent only on x, , and £, . So, the

(5| f:' )pl_(xf 5D
Pm (x, | xo:/—l sﬂl:t)
density  p(x, | A1)
approximate by P(xt|ﬂ1:t) ~ 2(155(% ;).
t

modified weights are q,j gl

the filtered posterior can be

A problem that frequently occurs is the degeneration, i.e.,
the accentuated reduction of the weights of all the particles.
A severe degeneration occurs when size of effective sample
is less than or equal to Ny , i.e., N, <Ny and N, is small.

The effect of this degeneration can be reduced if N is too

large, which is often impractical in certain situations. To
avoid this problem you can use two alternatives: a) a good
choice of the modified density and b) the use of resampling.
With the advance in computation, resampling has become a
major cooperator for solving such problems. The basic idea
of resampling is to eliminate particles that have small
weights and concentrate on larger weight particles [7].

3.2.2 SIR algorithm

The SIR algorithm utilizes the resampling in each time
interval. The algorithm stages are described as following:

Initialization
(1) Generate N samples x’ ~ p(x,), i =1,...,Ng.
(ii) Calculate weights ¢/ = p(x!).
(iii) Normalize the weights g, =q,/>.q; .

j=1

Update
(iv) Generate N, samples u! ~ p(u,)
) Update samples by Eq. 1 where x| and u, , are

obtained in stages (i) and (iv) respectively

(vi) Update the weights, ¢ =¢ p(ﬁt|xf ), where
p(Blx)) is deduced by Eq.2.
(vii) Normalize the weights, g, = ¢,/ >.q/
=1
Resample
(viii)  Make ¢, =0
(ix) Generate N, -1 points ¢, i=2,...,Ng

¢;=c,+1/Ng,i=2,...,Ng
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(x) Initialize i=1.
(xi) Generate initial point: u, ~ U(0,1/N;).
(xii) Generate a set of N, samples in the following
format

o Foreachj=1,...,N;.

o Make wu; =u, +(j+1)/ Ny

. If u,>c,, make i=i+l

o Makex/ =x',q/ =1/Ny, i/ =i.

4  Applications and Results

In this section the application of the SIR particles filter is
presented to the target tracking problem using simulated
and real sonar data. The data are bearing measurements of a
target obtained with a passive sonar system. It is considered
that the target moves in the XY plane and adopts the
following state and measurement models:

x,=Fx,, +Gu, , and B, =B, +w, t=1...,Ng (6)
where

1700 7?/2

01 0 0f

F= G=| T

00 1T 0 T%/2

000 1 0 T
and T is the sampling interval. The system and

measurement noise are zero mean gaussian white noise
process with covariance matrix and variance equals Q and
R , respectively. The initial target state is assumed gaussian
distributed with known mean x and covariance P .

There are several different formulations and coordinates
systems to model the measurement process and the state
dynamics. Frequently, Cartesian coordinates are used to
formulate bearings-only estimation problems. Also,
modified polar coordinates are used in bearings-only
problem because the unobservable component (range) is not
coupled with the observable components [1]. The modified
polar state vector consist of the following components:
bearing, bearing rate, range rate divided by range and the
reciprocal of range. In this paper, we consider that the data,
in modified polar coordinates, are transformed to cartesian
coordinates to implement the target tracking algorithm and
then the results are transformed back to modified polar
coordinate.

The transformation of modified polar into cartesian
coordinates [1] is given by

T sinf,

Va | 1 |Gy /r)sing, + B, cos B,
Ty - % cos 3, .

Vo (7; /1) cos B, = BysinfB,

where v %

wo Iyand 7, are the relative velocity and

Xt
position of target in x and y coordinates in time ¢, ,Bt ,

7, /r,, Band 1/r, are the bearing rate, range rate divided

by range, bearing and reciprocal of range of target in time
t. The transformation of cartesian into modified polar
coordinates is given by



. 2 2
B, (thryt - Vytrxt) Hrg + ryt)
. 2 2
1 /Vt (thrxt + Vytryt)/(rxt + ryt
= -1
B, tan " (r, /7,,)
2 2
1y 1/1/rx,+ry,

Applications of EKF and PF are utilized to obtain an
estimate of the bearing, course, speed and range of the
target.

We consider that when the observer begins tracking the
target it is at position (0,0) . The performance of the target

motion estimation depends on the initial target state
estimate. The choice of an initial target state is an important
task. The initial range is set with tactical and underwater
considerations [11]. The observer motion can help the
quality of track performance. Besides of a good initial
target state estimate, the initial error covariance matrix must
also be determined. It is important to reflect as best as
possible the errors in the target state estimate.

4.1 Simulated Data

The simulated data used were obtained from Gordon
scenario [5]. The initial position of the observer is at the
origin and its heading direction is north. The initial
trajectory of the target is on a smooth curve. The bearings
utilized to estimate target trajectory are the measurements

obtained through the model g, = tan™" (r,, / Iy ), where r,
and r, are relative target positions. These bearings were

applied in the algorithms SIR and EKF. The initial state
was set x=[-0.1 0 1.4 0.05]. SIR algorithm was

applied with N =4000. The others parameters were set
R=2.5x10", O = diag(107°) . Figure 2 presents errors of

EKF and SIR estimates of the modified polar coordinates.
These results demonstrate that the EKF errors is highest
than SIR. Figure 3 presents SIR and EKF estimates of
bearing, course, speed and range. The SIR algorithm
performance is better than EKF.

4.2 Real Sonar Data

In this case, the data were obtained from real bearings of a
submarine passive sonar in an operational naval
environment. Figure 2 shows the energy that arrives at the
sonar sensors in all directions. The top graph shows the
energy of 360 degrees bearings on the current time and the
graph below shows the energy versus bearings over time in
an interval of colors in which most dark represents highest
levels of energy. The target that we would like to track is on
a trajectory with constant heading and speed. It is observed
that there are other sources of noise besides the desired
target. The energy from these sources contributes to mask
the energy of the desired signal of the target.

Two data set are presented in this work to apply the
algorithms: without observer’s maneuvers and with one
observer’s maneuver. Raw bearings have been preprocessed
before the SIR and EKF algorithm. In the first set, the target
is traveling at constant speed of 5.5m/s and course of
10° with 3000 meters of distance to the observer in the
beginning of the tracking. The observer is with 2.5 m/s and
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course of 0°. Figure 4 presents the true bearings obtained
from sonar sensors. For this set, we have 150 bearings
taken at 7=2s. The algorithm was implemented using SIR
with N =20000. The parameters of initialization are the
same for both algorithm. The initial value of the state vector
is[-200 1 -3500 3]. The measurement noise variance

R=2x107
O =diag(107). Results of bearings, course, speed and

range are presented in Figure 5. Even though the
implementation of EKF is faster than SIR, the results
demonstrate that the SIR performance is better than EKF.

is and the system noise covariance is

o 100 — !
© h —— EKF
25 o
c £ OF +—+ ——+—+ H——+ 4 4/ T
= AN
3 N
1] -100 L L » L
50 5 10 15 20 25
oE 5 ! ! |
w® —— EKF
-3 A —— SR
S S O 4=+ S+ b A T T e et
©
5 -
Xo s . . . .
3o 5 10 15 20 25
S 40 |
£ —— EKF
S I
[=2)
£ S~ *\#
5 OF +—+ ——4+—+ +—+—+ +—b—4 +—4— -~ 4+ 4+ o
@
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@ 5 10 15 20 25
—_ S 1 : : :
T =
g0 —— EKF
Sa R —— SR
s o 05 .
G g —+
Joa] N\ o
X o . e L N eSS S P
0 5 10 15 20 25

Fig. 2 — Simulated data - SIR and EKF estimates errors of
modified polar coordinates.
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Fig. 3 — Simulated data: SIR and EKF estimates of bearing,
course, speed and range.
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Fig. 4 — Bearing/Time records: first data set.

In the second set, the target is travelling at a constant speed
of 5.5m/s and course of 10° with 14000 meters of distance
to the observer in the beginning of the tracking. The
observer starts with course of 110° and change to 63° and
velocity of 2.5 m/s. Figure 6 presents the true bearings
obtained from sonar and Figure 7 shows the bearings. For
this set, we have 450 bearings. The algorithm was
implemented using SIR with N =20000. The initial value
of the state vector is [-2000 1 —-10500 4]. Results of
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bearings, course, speed and range are presented in Figure 6. other distributions for the system noise instead of the
For this data set, EKF was unable to respond to the target’s gaussian distribution used in this work and the investigation
trajectory variation as the SIR algorithm. The performance of the initialization of the PF algorithm should also be
of SIR algorithm is again better than EKF. addressed in future works.
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