
A numerical analysis of fluctuations in pressure wave
within the larynx using two-dimensional asymmetrical

vocal folds model

Hideyuki Nomuraa, Tomoo Kamakuraa and Tetsuo Funadab

aDept. of Electronic Eng., Univ. of Electro-Communications, 1-5-1, Chofugaoka, 182-8585
Chofu-shi, Japan

bDiv. of Electronic Eng. and Computer Sci., Kanazawa Univ., Kakuma-machi, 920-1192
Kanazawa-shi, Japan
nomu@ee.uec.ac.jp

Acoustics 08 Paris

3847



In this study, we numerically simulate the speech production on the basis of asymmetrical vocal fold
(VF) model as a pathological VF model, and consider asymmetrical VF vibrations and also fluctuations
in pressure wave within the larynx. The simulation show that the left and right VFs asymmetrically
vibrate with a phase difference in the asymmetrical model. We estimate the fundamental frequency,
amplitude and waveform fluctuations in pressure wave within the larynx. The fluctuations obtained by
numerical experiments in the symmetrical VF model are in rough agreement with those obtained by real
speech signal. However, with increasing asymmetry, the fluctuations of numerical experiment are out of
the range of the real speech data. This result suggests that the degree of VF asymmetry can be detected
by estimating fluctuations in speech wave.

1 Introduction

Voice disorders render a comfortable social life very dif-
ficult, since a voice is one of the most important tools
for human communication. A better understanding of
the dynamics of the speech production may contribute
to the improvement of quality of life.
An analysis of pathological voice production contributes
to the development of medical examination technique
against voice disorders and rehabilitation of the recovery
of voice. Tanabe et al.[1], Isshiki et al. [2] and Aomatsu
et al.[3] studied pathological vocal fold (VF) vibrations
by means of the observations of canine VFs and nu-
merical simulations of asymmetrical VF models. Left
and right VFs synchronously and symmetrically vibrate
for non-pathological VFs. The vibration of pathological
VFs, such as the VFs with a polyp, which have differ-
ent properties in the left and right VFs, would indicate
different behavior from that of normal VFs.
In this study, we numerically simulate the speech pro-
duction on the basis of a pathological VF model as an
application of our proposed glottal source model [4], and
consider asymmetrical VF vibrations and also fluctua-
tions in pressure wave within the larynx. First, patho-
logical VFs are model as asymmetrical VFs with asym-
metries of geometrical or mechanical parameters. Then,
the speech production on the asymmetrical VF model
is numerically simulated, and fluctuations in pressure
wave are estimated. Finally, we compare the fluctua-
tions obtained from the numerical experiment and some
measured data for real speech.

2 Speech production model

2.1 Larynx and vocal tract models

A two-dimensional larynx model in the coronal (z-x)
plane is shown in Fig. 1(a). We assume that a config-
uration is uniform in the sagittal (y) direction in order
to simply a problem. The vocal tract attached to the
larynx is approximated by a uniform rigid duct. The
detailed description of the shapes has been presented in
previous papers [5, 6].

2.2 Mechanical VF model

The present mechanical model of vibrating VF is based
on the distributed parameter model proposed by Ikeda et
al. [7]. The VF can be divided into two tissue layers
with different mechanical properties: a cover layer and
a body layer. The cover layer is assumed to be an elastic
cover with the effective mass of the VF. In order to take

the mechanical properties of the VF into account, the
elastic cover is supported by an array of small mechan-
ical elements having nonlinear spring and damper [4].
Figure 1(b) shows a proposed VF model. In order to
simplify the analysis, we restrict VF vibrations to the
lateral direction x. The vibration of the VF is governed
by the equation of motion consisting of the fluid force,
i.e., the pressure and the viscous stress of the flow, the
restoring force of the spring, the viscous drag force of
the damper, and the shear force of the elastic cover [4].
The geometrical property of the VF is characterized by
the thickness of the VF (TVF), the effective depth of the
VF vibrational area (DVF) and the half gap distance
from the midline of symmetrical larynx (GVF/2). The
mechanical property of the VF is characterized by the
Young’s modulus of spring element and the elastic cover
(EVF), the volume density of the elastic cover (ρVF) and
the viscosity of the damper element (νVF).

2.3 Glottal flow model

The glottal flow is assumed to be an unsteady two-
dimensional compressible viscous fluid. The fluid mo-
tion is analyzed on the basis of boundary fitted coor-
dinates along the surfaces of larynx. In order to con-
sider a moving boundary problem arising as a result of
the shape change of the VF, we employ a finite differ-
ence method based on the ALE (arbitrary Lagrangian-
Eulerian) method [8].

2.4 Asymmetrical VF model

We consider effects of geometrical and mechanical asym-
metries of VFs on the speech production. Figure 1(c)
shows schematic presentation of (geometrical) asymmet-
rical VF model. The asymmetries of the left VF (L-VF)
and right VF (R-VF) are controlled by the following
asymmetrical parameters:

αD = DL−VF/DR−VF,

αG = GL−VF/GR−VF,

αT = TL−VF/TR−VF,

⎫⎪⎬
⎪⎭ (1)

αE = EL−VF/ER−VF,

αρ = ρL−VF/ρR−VF,

αν = νL−VF/νR−VF.

⎫⎪⎬
⎪⎭ (2)

αD, αG and αT are geometrical asymmetrical parame-
ters, and αE , αρ and αν are mechanical those. The sub-
scripts L-VF and R-VF denote the parameters of the left
and right VFs, respectively. In the present study, keep-
ing the parameters of the R-VF at the normal values
showed, the parameters of the L-VF are varied.
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Figure 1: Analytical models of speech production.
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Figure 2: Example of sound generation based on sym-
metrical VF model at PL0 = 800 Pa. VF vibrations
gL(t) and gR(t) denote the distance of the left and right
VF surfaces from the midline of the larynx (the z axis),
respectively, at z � 0 mm in (a).

3 Results and discussion

3.1 Simulation of speech production

Figure 2 shows an example of simulation result in the
symmetrical VF model. In the present simulations, lung
pressure PL0 is set to a constant value of 800 Pa, which
corresponds to the value for an ordinary conversation

level. VF vibrations gL(t) and gR(t) denote the dis-
tance from the midline of the larynx (the z axis) to the
surfaces of the L-VF and R-VF, respectively. The vi-
brations are measured at the location of upper lips at
z � 0 mm. Normalized pressure waves p(t)/PL0 are
measured at different distances (z = 0, 20 and 160 mm)
from the glottis, where t denotes the time from the be-
ginning of application of lung pressure. A symmetrical
vibration between the L-VF and R-VF is observed. As
an interesting phenomenon, the pressure wave indicates
fluctuations, i.e., the fundamental frequency f0, the am-
plitude (peak-to-peak) Pp−p and the waveform, caused
by unsteady vortex motions within the larynx [6].

3.2 Effects of VF asymmetry on fluctu-
ation

Pressure waveforms in the larynx indicated fundamental
frequency, amplitude and waveform fluctuations. In or-
der to quantitatively evaluate the relationship between
the fluctuations and VF asymmetries, the following three
fluctuation measures are estimated [9, 10]:

• The coefficient of variation of fundamental fre-
quency (CV of f0): the measure of fundamental
frequency fluctuation,

• The CV of amplitude (CV of Pp−p): the measure
of amplitude fluctuation,

• The harmonic-to-noise ratio (HNR) [11]: the mea-
sure of waveform fluctuation.

The CV is the ratio of the standard deviation, σ, of
sequence to the average value, m, of sequence, that is,
CV= σ/m. f0 and Pp−p sequences are extracted at each
pitch period from a pressure wave as follows (see Fig. 3).

1. Extract the fundamental wave from the pressure
wave by fundamental wave filtering [12].

2. Segment by detecting the zero crossing of the fun-
damental wave.
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Figure 3: Segmentation into pitch periods by detecting
zero crossing of fundamental wave [12].

3. Extract f0 (reciprocal number of segment duration
T ) and Pp−p from individual segments.

The HNR is a measure of the cycle-to-cycle similarity
of a waveform, and is sensitive to waveform aperiodic-
ity [11]. The HNR is defined as the ratio between the
energy of the periodic (harmonic) component H to the
energy of the aperiodic (noise) component N in a wave.
The energy of the periodic component H is consistent
with the energy of the average wave that is determined
by taking the average of a succession of period sequence.
The energy of the aperiodic component N is the mean
energy of the difference between individual periods and
the average wave [9, 10, 11].
A original pressure wave p(t) can be considered as the
concatenation of the waves pi(τ) from each pitch period,
where i = 1, 2, · · · ,M , and M is the number of samples
(see Fig. 3). Examples of extracted pi(τ) are shown in
Fig. 4(a) by thin gray lines.
The average wave pA(τ) is defined as

pA(τ) =
1
M

M∑
i=1

pi(τ), (3)

and is shown in Fig. 4(a) by the thick black line as an ex-
ample. For the calculating pA(τ), we assume that pi(τ)
is equal to zero in the interval between Ti and Tmax,
where Ti and Tmax are the duration of the i-th period
and the maximum period, respectively. The energy of
the periodic component H is defined as

H = M

∫ Tmax

0

{pA(τ)}2 dτ. (4)

The noise wave in the i-th pitch period is equal to pi(τ)−
pA(τ) (see Fig. 4(b)). The energy of the aperiodic com-
ponent N is defined as

N =
M∑
i=1

∫ Ti

0

{pi(τ) − pA(τ)}2 dτ. (5)

Then, HNR= 10 log(H/N) (dB) [10].
Figures 5 and 6 show the relationships between the ge-
ometrical and mechanical asymmetries and the fluctua-
tion measures in pressure waves at different distances
from the glottis, respectively. The asymmetrical pa-
rameters except for that indicated in the lateral axis
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Figure 4: Periodic (harmonic) and aperiodic (noise)
pressure waves. The pressure wave pi(τ) in each period
(thin gray line in (a)) is extracted from the original pres-
sure wave p(t) by segmentation using the zero crossing
of the fundamental wave [12]. The average wave (thick
black line in (a)) corresponds to the harmonic wave. The
noise wave pi(τ) − pA(τ) in each period is indicated by
thin gray line in (b).

are kept constant at unity. Closed circles, open circles
and squares denote measured values at z = 0, 20 and
160 mm, respectively. Solid, dotted and dashed curves
denote the fitted curves to the measured data obtained
using a squared function of asymmetrical parameter.
The variations of the CVs of f0 and Pp−p with the depth
and density asymmetries indicate concave profiles and
that of HNR indicates a convex profile. For most cases,
the fluctuations at z = 160 mm are smallest. This trend
clearly appears in HNR.
For reference, the gray zones denote distributions of fluc-
tuation measures of real speech data for normal utter-
ances of Japanese five vowels. The speech data of three
adult males were recorded at the mouth in an anechoic
room. We estimated the fluctuation measures for the
data with an almost constant amplitude in duration of
1 or 2 s. The CV of f0 and HNR at z = 160 mm for the
symmetrical condition (αT = αD = αG = 1) obtained
from the numerical experiment are in the range of the
distribution of the real data.

3.3 Discussion

In this paper, we estimated three fluctuation measures,
the CVs of f0 and Pp−p and HNR. The fluctuation of
magnitude of the CV of f0 and the profile of the CV
of Pp−p showed no clear trends with measured location.
On the other hand, trends in the magnitude and the
profile of the HNR with measured location could be ob-
served. Therefore, the HNR in speech wave is usefully
for the estimation of fluctuation of speech.
The fluctuations obtained by numerical experiments in
the symmetrical model are in rough agreement with that
obtained by real speech data. However, with increasing
the asymmetry, for example, αρ < 0.5 or αρ > 1.75
in HNR, the results of numerical experiment are out of
the range of real speech data. This suggests that the
degree of VF asymmetry can be detected by estimating
fluctuations in speech wave. In reality, the estimation
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Figure 5: Effects of geometrical asymmetries of VFs on pressure wave fluctuations . Closed circles, open circles and
squares denote the measured data, and the solid, dotted and dashed curves denote the fitting curves to the measured
data obtained using a square function of the asymmetrical parameter. Gray zones denote distributions of fluctuations
of real speech data for normal utterances of Japanese five vowels measured at the mouth.
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Figure 6: Effects of mechanical asymmetries of VFs on pressure wave fluctuations. The symbol marks and curves are
the same as in Fig. 5.
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of HNR in speech wave was examined as an index of the
degree of hoarseness [11].
The causes of fluctuations in speech wave is not only
mechanical and geometrical asymmetries of VF, but also
neurological and aerodynamic effects [13]. In addition,
in mechanical and geometrical asymmetries, fluctuated
wave is caused by not only one type of asymmetry,
but also an interaction of multi type of asymmetries.
More detailed work of estimations of fluctuation for real
speech data and numerical simulation is necessary in or-
der to apply estimations of fluctuation in speech wave
for the support technique for a diagnose of pathological
voice.

4 Conclusion

In this paper, we numerically simulated the speech pro-
duction on the basis of a pathological VF model, and
considered asymmetrical VF vibrations and also fluctu-
ations in pressure wave within the larynx. Pathological
VFs were model as asymmetrical VFs with asymmetries
of geometrical or mechanical parameters. Speech pro-
duction was numerically simulated by alternately solv-
ing the glottal flow and VF vibration.
We estimated the fundamental frequency, amplitude and
waveform fluctuations in pressure wave within the lar-
ynx, and compared those with the fluctuations obtained
from real speech signals. The fluctuations obtained nu-
merical experiments in the symmetrical VF model are
in rough agreement with those obtained by real speech
signal. However, with increasing asymmetry, the fluc-
tuations of numerical experiment were out of the range
of the real speech data. This result suggests that the
degree of VF asymmetry can be detected by estimating
fluctuations in speech wave.
The causes of fluctuations in speech wave is not only
mechanical and geometrical asymmetries of VF, but also
neurological and aerodynamic effects. In addition, the
fluctuations are caused by not only one type of asymme-
try, but also an interaction of multi type of asymmetries.
More detailed work of estimations of fluctuation for real
speech data and numerical simulation is necessary in or-
der to apply estimations of fluctuation in speech wave
for the support technique for a diagnose of pathological
voice.
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