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Recently, a wave acoustic simulation becomes a useful tool for considering a method for noise reductions.
The finite difference method in time domain is often used in wave acoustic simulations. The accuracy of
this method depends on numerical dissipation and dispersion caused by finite difference approximation
and time integration. A compact finite difference can reduce numerical dispersion of space derivative.
Therefore, an optimization method of the compact finite difference is investigated. In order to improve
time integration, a symplectic integration technique is adopted and excellent long time behavior is ob-
tained.

1 Introduction

Recent development of computer technology enables us
to carry out wave acoustic simulation for considering
noise reduction. A wave nature of sound plays an impor-
tant role in the prediction of noise. A finite difference
method is easy to construct a numerical model from
a physical model compared to the boundary element
method or finite element method. The finite difference
method often simulates wave propagations in time do-
main (FDTD) and enables us to grasp transient phe-
nomena of sound.

In order to make an accurate simulation, a numer-
ical dispersion which artificially makes propagation ve-
locity different according to wave length, must be elim-
inated. A compact finite difference method effectively
suppresses the numerical dispersion. We have optimized
the coefficients in the compact finite difference.

First, the basic equation of sound propagation is de-
scribed. Next, an optimization scheme of compact fi-
nite difference shall be discussed. Improvement tech-
niques of time integrations are also investigated. A one-
dimensional benchmark problem is solved by the pro-
posed method. The influence of numerical dispersion
on the wave propagation is shown in the next section.
The last section is devoted to the conclusion.

2 Basic equation of sound wave

propagation

In order to consider the time evolution equation for
sound propagation, the sound pressure p and the ve-
locity vector v are coupled. Neglecting the attenuation
and nonlinear effects, we obtain the coupled partial dif-
ferential equations

ρ0
∂v

∂t
= −∇p, (1)

∂p

∂t
= −ρ0c

2div v + ρ0c
2Q, (2)

where Q is volume velocity, ρ0 mean density and c,
sound velocity, respectively. Though these equations
seem simple, this fact does not mean that it is easy
to carry out numerical simulations. As the attenuation
term is absent, small errors can survive or diverge in
numerical solutions.

In order to make the numerical model of the cou-
pled partial differential equations, the variables are usu-
ally defined on a staggered grid. A staggered grid in
2-dimensional space is illustrated in Fig.1. The pressure
is defined on the center of mesh and velocities, on the
edges.

Velocity X
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Figure 1: Staggered Grid

3 Optimized compact finite dif-

ference scheme

When accurate values of differentiations are required in
a finite difference method, a grid spacing should be small
compared to the typical wave length in the problem.
Thus, for a high frequency problem, the grid spacing
have to be small and the degree of freedom amounts to
a huge value. In order to resolve this problem, a higher
order or a compact finite difference can be applied [1].
The basic idea of the compact finite difference scheme
is to couple differentiated values. Furthermore, the nu-
merical dispersion of a compact finite difference on a
uniform staggered grid can be minimized by adjusting
coefficients. Introducing a parameter α, we consider a
compact difference for a grid spacing h,

αf ′

i+1 + f ′

i + αf ′

i−1

= b
fi+3/2 − fi−3/2

3h
+ a

fi+1/2 − fi−1/2

h
+ e. (3)

Here, the coefficients a and b and the error term e are
related by

a =
3

8
(3 − 2α), b =

22α − 1

8
, e =

9 − 62α

1920
h4f (5) (4)

When α = 1/22, the coefficient b vanishes and the com-
pact finite difference is represented by a least number
of grid points. Thus, this case is effective for the cal-
culation around a complex obstacle. When α = 9/62,
the fourth order error term e vanishes and the differ-
ence equation becomes sixth order. We shall evaluate
effective wave number k′. Effective wave number k′ is
defined by the function f(x) = sin(kx) and its first order
differentiation k′ cos(kx) evaluated by a finite difference.
The normalized wave number w = hk and normalized
effective wave number w′ = hk′ are defined by the grid
spacing h. For example, w = π/2 means 4 grid points
exist per one wave length (4ppw: point per wavelength).
In the case of the second-order explicit finite difference
on the staggered grid, w′ becomes

w′ = 2 sin(
w

2
). (5)
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Figure 2: Relative error of effective wave number

This deviates from the exact value when the normalized
wave number is not very small. On the other hand,
for the compact finite difference with parameter α, we
obtain

w′(w,α) =
2a sin(w

2 ) + 2
3b sin( 3w

2 )

1 + 2α cos(w)
. (6)

The exact value is w = w′ and the difference from the
exact value is numerical dispersion error. Some proper-
ties of w′

w′(0, α) = 0, w′(π, α) =
7 − 10α

3(1 − 2α)
, (7)

w′(π, α) < π, when α <
3π − 7

6π − 10
≈ 0.27 (8)

can be derived. Therefore, when α is less than 0.27 and
there is a point on which satisfies w′ > w in an interval
(0,π), then there exits a point w1 where w = w′, i.e.,

w′(w1, α) = w1. (9)

Considering the sign of the error term near the origin,
when α > 9/62, the curve w′(w,α) is larger than the
line of exact wave number around origin. When the α
is small, the effective wave number becomes less than
the theoretical value even if the ppw is not so small.
On the other hand, when α is large, the effective wave
number can approximate well the theoretical value up
to the region of short wave length. In that case, the
point w1 and parameter α are related by

α =
27 sin( 1

2w1) − sin( 3
2w1) − 12w1

18 sin( 1
2w1) − 22 sin( 3

2w1) + 24w1 cos(w1)
. (10)

Therefore, adjusting the parameter of α can improve
the finite difference according to the target frequency of
the numerical analysis. The relative error (w′−w)/w is
shown in Fig.2. In order to optimize α, we have adopted
the following strategy. First, we shall set the maximum
frequency to be analyzed and corresponding normalized
wave number w0 are calculated. Next, the parameter α
is determined so that the maximum value of a relative
error in the interval of (0, w0) is minimized.
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Figure 3: Maximum relative error

Table 1: Maximum wave number w0, optimized α and
maximum relative error

point per wave optimized relative error
w0 length (ppw) α

0.25π 8 0.14905 4.5×10−6

0.3π 6.67 0.1508 1.4×10−5

0.35π 5.71 0.15295 3.5×10−5

0.4π 5 0.15555 8.1×10−5

0.45π 4.44 0.15855 1.7×10−4

0.5π 4 0.1621 3.3×10−4

0.55π 3.64 0.16625 6.1×10−4

0.6π 3.33 0.17100 1.1×10−3

The maximum relative error up to maximum nor-
malized wave number w0 is plotted in Fig.3 where hori-
zontal axis means α. The minimization of the maximum
relative error can be attained through adjusting the pa-
rameter α. In Table 1, maximum wave number, opti-
mized α and maximum relative error are shown. Thus,
we can carry out accurate simulation through a relative
large grid spacing.

4 Improvement of time integra-

tion

As the time integration is carried out in FDTD, our next
aim is to improve the time marching operation. Here,
we consider two types of integration techniques, the first
one is linear multistep method and the second one, a
symplectic integration [2, 3]. At first, let us examine
the linear multistep method. Hereafter, the exact time
derivative of function f is represented by F . The most
simple time integration formula is

f(t + ∆t) − f(t)

∆t
= F (t +

∆t

2
). (11)

In order to improve accuracy of the time evolution, a
method in which multiple time step values of F (t) are
utilized to carry out the time integration, can be con-
sidered. We consider a numerical integration

f(t + ∆t) − f(t)

∆t
= b0F (t +

∆t

2
) + b1F (t −

∆t

2
)
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Figure 4: Relative error to b0

+b2F (t −
3∆t

2
). (12)

In this case, the coefficients b′s are related by

b1 = (2 − 2b0), b2 = (b0 − 1). (13)

When b0 = 1, the eq. (12) reduced to one step inte-
gration which is usually used in FDTD. An improve-
ment of the integration can be made by adjusting the
parameter b0. We shall consider a test function f(t)
= exp(iωt), with angular frequency ω and also suppose
that the time differentiations of the test function at the
time t + ∆t/2, t−∆t/2, t− 3∆t/2 are exactly obtained.
By angular frequency ω and time step ∆t, the normal-
ized angular frequency θ = ω∆t is defined. The param-
eter b0 is optimized in order that the absolute value of
difference between the exact value of f on the step t+∆t

f(t + ∆t) = f(t) exp(iθ) (14)

and the numerical value

f̃(t + ∆t) = f(t)[1 + iθ(b0 exp(i
θ

2
) + b1 exp(−i

θ

2
)

+b2 exp(−i
3θ

2
))] (15)

is minimized. The parameter b0 as function of θ in order
to minimize the relative error err

err = |
f̃(t + ∆t) − f(t + ∆t)

f(t + ∆t)
|. (16)

The relative error is plotted in Fig.4. Each line represent
θ and the minimum value versus b0 is obtained. For var-
ious θ’s, the optimum parameter are shown in Table 2.
As a comparison, the error for the case of b0 = 1 which
corresponds to the one step integration is also shown.
When the normalized angular frequency is small, the ef-
fect of the improvement is large. In FDTD calculations,
this multistep integration is applied to both sound pres-
sure and velocity vector evolutions. As the amount of
finite difference calculations per one time step march-
ing by this method is the same as the normal one, the

Table 2: Normalized angular frequency, optimum b0

and reletive error

Normalized optimum Relative error
θ b0 error for b0 = 1

0.1 1.0415 4.16×10−6 4.17×10−5

0.5 1.037 2.49×10−3 5.19×10−3

1.0 1.024 3.46×10−2 4.11×10−2

1.5 1.0035 1.36×10−1 1.36×10−1

Table 3: Coefficient for Ruth’s formula.

1 2 3

bi 7/24 3/4 -1/24

b̃i 2/3 -2/3 1

improvement can be fulfilled without much augmenta-
tion of calculation time. On the other hand, the finite
difference calculation must be carried out in each in-
termediate time step in the higher order Runge-Kutta
method and the amount of calculation is multiplied.

Although multistep time integration can improve an
accuracy in time marching, the effect is not large for
a comparatively large time step. A symplectic integra-
tion which preserves several conservation quantities is a
excellent scheme when the dynamics of the system is de-
scribed by two or more variables and possesses a Hamil-
tonian structure. The symplectic integration scheme is
developed for the last few decades and can be applied to
particle dynamics, celestial mechanics and wave propa-
gations [2, 3]. Although the theory of the symplectic
integration is mainly developed in ordinary differential
equation, extensions to a partial differential equation
have been investigated recently [4, 5]. Here, we shall
not go deep far into the symplectic integration for par-
tial differential equation and apply Ruth’s method to
the differential equations for the acoustic propagation.
In spite of its simplicity, the time integration can be
done for long time with excellent accuracy.

We shall describe the out line of symplectic integral
method. When a set of ordinary differential equations
for variables p and q is described by the following form

dp

dt
= f(q),

dq

dt
= g(p) (17)

The time marching by time step τ is carried out through
m intermediate steps i,

Pi = Pi−1 + τbif(Qi−1)

Qi = Qi−1 + τ b̃ig(Pi), (18)

where

P0 = p(t), Q0 = q(t), Pm = p(t + τ), Qm = q(t + τ) (19)

The coefficients bi, b̃i for Ruth’s formula are shown in
Table 3. For wave propagation, p and q considered
acoustic pressure and velocity vector v, respectively.
Also f(q) and g(p) are described by the compact finite
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Figure 5: Wave form by primitive FDTD with CFL
number=0.9.
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Figure 6: Wave form by fourth order compact finite
difference and leap frog time integration with CFL

number = 0.25.

differences of velocity vector v and pressure p, respec-
tively.

The benchmark problem of 1-dimensional wave prop-
agation has been carried out. We have set the initial
wave form f(x)

f(x) =
1

2
exp[− ln 2(

x

3
)2], (20)

and the grid spacing, h = 1.0 and the sound velocity
1.0. The simulations of wave propagation are done up
to 10000 time step. The resulting shapes are illustrated
in Figs.5-7. In each Figure, the center of mass is shifted.

The result obtained by optimized fourth order finite
difference with parameter α = 0.1475 and Ruth’s time
integration scheme is excellent. Even at the time step
10000, the wave shape almost retains the orignal form
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Figure 7: Wave form by optimized fourth order
compact finite difference (α = 0.1475) and Ruth’s time

integration with CFL number= 0.5.

Figure 8: Instantaneous sound pressure for α = 1/22

Figure 9: Instantaneous sound pressure for α = 0.17

by this scheme. Therefore, for a long time step compu-
tation, the symplectic integration is highly effective.

5 Visualization and auralization

of numerical dispersion

The influence of the numerical dispersion on the simu-
lation can be recognized through visualization and au-
ralization. As a large portion of numerical dispersion is
caused by the truncation errors in the finite difference
operations, the numerical dispersions by spatial finite
differences are investigated.

In order to visualize the numerical dispersion in multi
dimensional space, 2-dimensional wave propagation is
simulated. A point source is set Gaussian wave packet
of central frequency 2500Hz in a free space. In simula-
tions, the sound velocity, the grid spacing and the time
step are set 340m/s, 40mm and 40µs, respectively. For
various α’s, instantaneous sound pressure distributions
are illustrated in Figs.8,9. The error is remarkable
when α is 1/22. On the other hand, for the case of
α = 0.17, the error is well suppressed and the obtained
distribution has an almost concentric circle pattern.

Next, in order to investigate quality of the sound ob-
tained by a numerical simulation through the optimized
compact finite difference, we attempt the auralization
by convolution. The wave number k on the grid spacing
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Figure 10: Response function by compact finite
difference with α = 1/22
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Figure 11: Response function by compact finite
difference with α = 9/62

h is related to the angular frequency ω by

ω =
c

h

2a sin(hk
2 ) + 2

3 sin( 3hk
2 )

1 + 2α cos(hk)
. (21)

By eq.(21) we can evaluate the numerical phase velocity
cp = ω/k. Then, the numerically delay time at the point
at the distance of r from the source becomes ∆ωt = r/cp.
The response function is calculated by adding each fre-
quency component with a phase delay below the higher
cut-off frequency. The auralization of a simulation re-
sult is fulfilled through a convolution with the response
function.

As an example, we supposed that the grid spacing
is 20mm, the cut off frequency, 4kHz and the distance,
300m. The response functions in time domain with var-
ious α’s are plotted in Figs.10-12. For each case, the
origin of time is shifted properly. The response func-
tion through compact finite difference with α = 1/22 is
not at all an impulse like shape. Even by a compact
finite difference, the numerical dispersion modifies the
impulse shape when α is small. The convolutions with
numerical impulse responses can make auralizations of
simulated sound. We could recognize the improvement
of sound quality by the reduction of the numerical dis-
persion attained by the optimization of coefficients in
the compact finite difference.
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Figure 12: Response function by compact finite
difference with α = 0.17

By these examples, we can observe that the improve-
ment of the scheme changes the simulated wave form
qualitatively. Therefore, a highly accurate method is
necessary for a prediction of sound propagation in prac-
tical situations.

6 Conclusion

We have shown the optimization of compact finite differ-
ence for the simulation of wave propagation. Through
the optimization, the numerical dispersion is reduced up
to higher frequency. A symplectic integration works well
for time evolution of a wave and brings an excellent long
time behavior. The influence of numerical dispersion
have been also investigated and we have demonstrated
that the highly accurate scheme is required for practical
acoustic simulation.
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