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In this paper we address the problem of using a multi-channel active control system in order to reproduce a 
harmonic sound field in a large part of the volume of a reverberant room. The problems associated with the 
calculation of the inverse system matrix are confronted by introducing a term that is proportional to the sound 
power-output of the system in the cost function that is obtained by the multiple point method. Simulation results 
show that this technique results to a better conditioning of the system matrix at low frequencies, comparing to 
other traditional regularization techniques. Moreover, it is shown that this method can be employed to increase 
the spatial robustness of the control sensor array inside the listening room. 

1 Introduction 

With the recent advances in digital signal processing, active 
control of sound has found new applications in the sound 
engineering problems of the small rooms. By specifying a 
set of desired signals at a number of receiving positions, 
active control can be applicable to tasks such as sound 
equalization and sound field reproduction [1-3]. These tasks 
are mainly based on the conventional multiple point 
technique which minimizes (in a least-squares sense) a cost 
function that expresses the difference between the desired 
complex sound pressure and the sound pressure that is 
actually reproduced at a number of sampling points inside 
the room. The optimum source strengths are calculated by 
inverting the system matrix that contains the acoustic 
impedance from the loudspeakers to the receiving positions 
inside the room. In practise, it is crucial to use a 
regularization technique in order to avoid the problems 
associated with the inversion of a badly conditioned or an 
under-determined system matrix [4]. 
It is well known that the properties of the system matrix, 
such as the maximum eigenvalue and the condition number, 
are straightforwardly related to the room natural dynamics. 
At the low frequencies, the frequency response of the 
acoustic path is heavily depended on frequency and on the 
position of the loudspeaker and the microphone relative to 
the boundary of the room. In this paper, we propose a 
technique which can be used in order to overcome the 
instabilities that characterize the performance of a sound 
field reproduction system at the low modal density region 
of a lightly damped rectangular room. This method 
demands the knowledge of the real part of the acoustic 
impedance from each source to the other inside the room. 
In [5], it was shown how the knowledge of these acoustic 
impedances can be used in order to achieve power output 
regularization. This regularization technique was examined 
in the case of equalization in a rectangular room. 
Equalization was performed with the generation of a plane 
wave travelling along the axis of the room. It was shown 
that power output regularization can lead to increment of 
the spatial robustness of equalization. This increment was 
realized as a smoother decay of the equalization 
performance away from the control sensors. In this paper, 
we consider a sound field reproduction system inside the 
rectangular room. Plane waves travelling at all possible 
directions from 0o to 360o have to be generated now. Apart 
from the effect in the spatial robustness, we present further 
benefits. In particular, it can be seen that power output 
regularization can be used in order to compensate for the 
non-flat system dynamics and can lead to a modified 
system matrix with important benefits compared to the 
original one. These benefits are shown in terms of 
increment of a convergence rate of a modified adaptive 
algorithm used for the adaptation of the source strengths in 
the frequency domain. 

2 Control model 

Suppose that it is desired to control the sound field in a 
spatial region inside an enclosure that is surrounded by L 
reproduction sources. The pressure in this spatial region is 
sampled by M monitor sensors placed at 1 2{ , ,..., }Mr r r , 
which provide a measure of the performance of 
reproduction at the entire listening space. The pressure at 
the monitoring sensors subject to the L source excitations 
can be written as [1] 
 pM =ZMq (1) 
where p is a column vector with the M complex sound 
pressures at the monitor sensors [Pa], q is a column vector 
with the complex strengths of the L sources [m3/sec], and 
ZM

 is an MxL matrix that carries the acoustic transfer 
functions from each source to the each field point at rm. 
From those M monitor sensors, we choose a small group of 
N control sensors covering a small spatial region that is 
centred inside the listening area at 1 2{ , ,..., }Nr r r . It is 
assumed here that this compact control sensor array 
represents a more feasible sound reproduction system that 
occupies less space and requires less equipment and input 
channels. The compact system is thus informed about the 
performance of reproduction in the controlled region by the 
difference between the desired sound pressure and the 
actual reproduced sound pressure at the control sensors as,  
 d= −e p Zq , (2) 
where pd is the vector with the desired sound pressures at 
the N control sensors, and Z is the compact system matrix 
carrying the acoustic impedances from the L sources to the 
N control sensors.  

2.1 The regularization technique 

The proposed control approach suggests the use of a cost 
function defined as  
 ( ) H HJ λ λ= +e e q Wq . (3) 
Here λ is a real positive scalar that weights the contribution 
of the penalty term in the cost function, the quantity qHWq 
expresses the total sound power emitted by the reproduction 
sources [W], and W is a symmetric and positive definite 
matrix with Wij representing the half of the real part of the 
transfer function from source i to j [6]. For distributed 
sources, each element of the matrix W can be calculated 
with proper integration of the transfer function on the 
surface of each source. The second term at the ride side of 
Eq. (3) is always a non negative quantity (the total power 
output of the system) which means that matrix W is 
positive definite. For such a matrix the Cholesky 
decomposition is always possible and it can be written as 
 H=W L L . (4) 
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Eq. (3) can thus be written in the general from of Tikhonov 
regularization [4] by noting that ( ) ( )H H=q Wq Lq Lq . The 
cost function defined in Eq. (3) implies the addition of an λ-
weighted sound power-output penalty term instead of the 
source effort penalty term used in standard regularization as 
[4] 
 ( ) H HJ µ µ= +e e q q . (5) 

Under the condition that Hλ +W Z Z  is positive definite 
and invertible, the optimal vector that minimizes J(λ) can be 
found by  
 ( ) 1( )H H

o d
λ λ −= +q W Z Z Z p .   (6) 

The optimum source strengths derived here should be 
compared with those obtained by standard regularization,  
 ( ) 1( )H H

d
µ
ο µ −= +q I Z Z Z p .   (7) 

It can be seen that the identity matrix I has been replaced 
by the fully populated matrix W which changes 
dynamically with frequency.  
The achieved quality of reproduction for each of the two 
optimum source strengths is measured over the entire 
listening space with the use of the M monitor sensors. 
Similar to Eq. (2), the error at the monitor sensors can be 
expresses as   
 .M d M M= −e p Z q , (8) 
where ,d Mp  is now the vector with the desired complex 
pressures at all the monitor sensors. The quality of the 
actual reproduced sound field over the monitor sensors is 
quantified by the global reproduction error, which is 
defined as 
 ( ) 1/2

1/2

, ,

, ,

( )

( ) ( )

M H
LS M M

H
d M M o d M M o

H
d M d M

E = =

 − −
  
 

e e

p Z q p Z q
p p

. (9) 

Here qo is the optimum source strength vector which is 
derived either from Eq. (5) or (6), for power-output penalty 
and effort penalty regularization respectively. For the case 
of a plane wave, a value of ( )M

LSE below 0.5 denotes that the 
deviations between the reproduced sound pressure and the 
desired one are within 6± dB, and this value can be used as 
a criterion for a good global sound reproduction result.  

2.2 The ideal system 

The calculation of the source strength vectors ( )
o
λq  and ( )

o
µq   

derived by Eqs. (5) and (6) is based on the information 
provided only by the control sensors. This means that the M 
monitor sensors don’t actually exist for the active control 
system. They are only used to measure the deviation 
between the actually reproduced and the desired pressure 
field inside the listening area. This also means that there is 
another vector, ( )ideal

oq , which produces a sound pressure 
that fits the desired sound field much better inside the 
listening area. This vector is calculated by minimizing the 
global cost function ( )ideal H

M MJ = e e , resulting to the 
optimum solution 
 ( ) 1

,( )ideal H H
o M M M d M

−=q Z Z Z p . (10) 
For this control strategy the system takes into account the 
information provided by all the monitor sensors inside the 

room. The control region thus coincides with the listening 
area, it in that sense it corresponds to the case of an ideal 
system. No regularization technique is included in Eq. (10). 
For the conditions examined, matrix H

M MZ Z  is always 
positive definite and invertible. 
 For the global system matrix ZM we present an interesting 
modification. This matrix can be multiplied by L-1, where L 
is derived from Eq. (4), resulting to the modified global 
system matrix  
 1

M M
−=Z Z L . (11) 

As it will be shown, this matrix has some very interesting 
properties comparing to the original global system matrix 
ZM. 

2.3 The adaptive approach  

The steepest descent method is employed for the adaptive 
calculation of the optimum source strengths. For the 
adaptive approach we take into account the ideal system. 
The source strengths are adapted at each sample by two 
different iterative equations 
 ( 1) ( ) ( )H

M Mn n nα+ = +q q Z e . (12) 
and 
 ( 1) ( ) ( )H

M Mn n nα+ = +q q Z e . (13) 
Here α and a  are the convergence coefficients and 
 

, ,( ) ( ) ( )M d M M d M Mn n n= − = −e p Z q p Z q . (14) 
It must be said that none of Eqs. (12) or (13) includes any 
kind of regularization such as effort regularization or power 
output regularization. The analytical calculation of  ( )ideal

oq  

based on matrixes MZ  or MZ would lead to the exact same 
solution. However, it is the convergence rate of each 
algorithm that differentiates the performance between Eqs. 
(12) and (13), as it will be seen. Also, it is assumed that the 
matrixes ZM and W correspond to the exact transfer 
function matrixes, and as a consequence,  this also holds for 
matrixes L and MZ . In a more realistic approach, both 
matrixes should include modeling errors and the analysis 
should be implemented in terms of the magnitude of the 
plant error in both matrixes ZM and W. 

3 Simulation results 

In the simulations presented in what follows the 
conventional modal sum of the sound field in a lightly 
damped rectangular enclosure proposed by Morse [8] is 
used in the form described by Bullmore et al [9]. Each 
source is modeled as a square pistons that vibrate with a 

normal velocity l
l

q
u

A
= , where A = a2 is the area of the 

piston sources. The piston sources are oriented inside the 
room so that their surfaces are parallel either to the xz- or to 
the yz-plane.  

Acoustics 08 Paris

2315



 

3.1 Conditions for the simulations 

A sound field reproduction system using 26 piston sources 
is considered in a two-dimensional rectangular room with 
dimensions Lx = 3.2, Ly = 3.6, and Lz = 0.2 m as in Fig. 1. 
The 26 sources are modeled as square pistons with side 
length of 0.1 m. The pistons are oriented in such way that 
their surfaces are parallel to the closest wall at a distance of 
0.05 m. The listening area in the room is defined as a 
rectangular plane centered inside the room with dimensions 
of 1.6x1.6 m with lower left corner at (0.8, 1, 0.1) m and 
upper right one at (2.4, 2.6. 0.1) m. The performance of the 
reproduction system is quantified by 17 x 17 = 289 monitor 
sensors that totally cover the listening region. The distance 
between adjacent sensors along the x- and y-axes is always 
equal to 0.1 m. Also, a compact array of 16 control sensors 
is placed in the middle of the listening area. The control 
sensors are represented by the black dots in Fig. 1. This 
array covers less than 6% of the listening area. 
All the modes up to 1200 Hz are used to model the sound 
field inside the room. The damping factor is set to 0.02 for 
all the modes, corresponding to a reverberation time of 0.55 
s at 100 Hz. The desired pressure field inside the room is 
defined as a two-dimensional plane wave traveling at 
direction θ as shown in Fig.1. 

 
Fig.1 Geometry of the room and arrangement of the sound 

reproduction system. 

3.2 Global reproduction performance 

The results that follow intend to distinguish the two 
regularization methods in terms of their global reproduction 
performance, as defined in Eq. (8). The performance of 
each regularization method, as well as of the ideal system, 
is shown at two different frequencies at 330 and 400 Hz as 
a function of the angle of propagation in θ (degrees) in Fig. 
2(a) and 2(b) respectively. 
The figures illustrate that power output regularization is 
characterized by a uniform reproduction performance at all 
angles of propagation, while effort regularization has led to 
serious degradation at angles of propagation that coincide 
with the directions of the axial modes at 0o, 90o, 180o, and 
270o. In [5] it has been shown that the reproduction error at 
the exact control sensor positions is trivial for both 
techniques at these angles of propagation but the classical 
regularization technique leads to unexcused activation of 

standing wave patterns outside the control region. Effort 
regularization has the tendency to activate the x- and y-
axial modes simultaneously, irrespective of the direction of 
propagation. The axial modes of the room are the strongest 
mean for the reproduction of a given pressure level inside 
the room and effort regularization takes advantage of them 
in order to reproduce the desired pressures at the control 
region with the minimum effort from the sources. 
Unfortunately, the x-axial modes have a very destructive 
effect in the generation of a plane wave propagating along 
the y-axis and for the same reason, the y-axial modes are 
very destructive for the case of propagation along the x-
axis, resulting to the strong peaks in the global reproduction 
performance of effort regularization seen in Fig. 2.  
Interestingly, the global reproduction performance is 
improved at the diagonal angles of propagation, which can 
be explained by the fact that both the x- and y- axial modes, 
as well as their combinations, are desired at these angles for 
the generation of the traveling wave. 

 
Fig. 2 Global reproduction performance as a function of the 
angle of propagation of the plane wave at a. 330 Hz and b. 

400 Hz. 

Power output regularization avoids the generation of such 
“unwanted” modes because in the opposite case, this would 
result to increment of the power output of the system. At 
the same time, the power output penalty term in the cost 
function forces some of the sources to behave like 
acoustical sinks (negative power), which is necessary in 
order to activate the mechanisms of power absorption 
which are required for the generation of the traveling wave 
[3, 5]. In that sense, it can be said that the proposed 
technique makes a more selective excitation of the room 
modes and as a result, avoids the severe reduction of the 
spatial robustness that is observed from the use of the 
traditional regularization technique at the axial angles of 
propagation. 
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3.3 System equalization 

The variation in the dynamic response of the each path, 
which is a consequence of the room natural dynamics, 
defines the algebraic properties of the matrixes ZM and W, 
such as the maximum singular value and the condition 
number at each frequency.  

  
Fig. 3 Variation of the maximum singular value of matrixes 

ZM, W and L with frequency. 

In Fig. 3 we plot the maximum singular values of matrixes 
ZM, W, and L as a function of the frequency. One can see 
that the peaks and dips in the maximum singular value of 
matrixes W and L coincide exactly with the peaks and dips 
of matrix ZM. This coincidence is a consequence of the 
room natural dynamics. One can observe that both 
expressions  and H H H

M Mq Ζ Ζ q q Wq  represent two relevant 
quantities: the average potential energy over the listening 
area [10] and the total acoustic power output. The condition 
number of the original and the modified system matrix is 
plotted as a function of the frequency in Fig. 4. It can be 
seen that post-filtering with L-1 has completely smoothed 
the frequency variation in the condition number of the 
modified matrix. From a point of view, the above action has 
equalized the non-flat system dynamics and has thus 
achieved system equalization [11]. In the next section, the 
advantages of this post-filtering process are shown in terms 
of increment of the convergence rate in the adaptive 
approach. 

 
Fig. 4 Variation of the condition number of the original and 

the modified system matrixes. 

3.4 Convergence rate of the adaptive 
algorithm 

The convergence rate of each adaptive algorithm defined in 
Eqs. (12) and (13) depends on the conditioning of the 
matrixes ZM and MZ  respectively [12]. From simulations 

made at various frequencies and angles of propagation it 
was generally observed that Eq. (13) converges faster than 
Eq. (12) at all frequencies and especially near the axial 
angles of propagation at 0o, 90o, 180o and 270o. It was 
observed that the value of α had to vary dynamically in 
order to ensure the stability of the algorithm at different 
frequencies whereas a constant value of a  was satisfactory 
for a wider range of frequencies. This seems to be in 
agreement with the fact that the values of the convergence 
coefficients in order to ensure stability are bounded from 
above as [12] 
 

max max

2 20 ,  0a a
σ σ

< < < < , (15) 

where σmax and maxσ  is the largest singular value of the 
original and the modified system matrix respectively.  

 
Fig. 5 Global reproduction error as a function of the 
iteration number of the adaptive algorithm for the 

generation of a plane wave traveling a. at 90o at 160 Hz and 
b. at 0o at 220 Hz. 

Two examples can be seen, when generating a plane wave 
traveling at the angles of 90o and 0o, at the frequencies of 
160 Hz and 220 Hz, in Fig. 5(a) and (b) respectively. The 
convergence coefficient α at each frequency was set to the 
maximum value that could be used in order to maximize the 
convergence rate of the conventional algorithm without 
forcing it to become unstable, whereas a  was set to 
constant value equal to 2·10-8 for both frequencies. 
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4 Conclusion 

The spatial robustness and the convergence rate of the 
conventional control approaches used in the active 
reproduction of a sound field in a reverberant rectangular 
room show severe deterioration at specific frequencies and 
angles of propagation. These problems are caused by the 
room resonance modes and by the resulting eigenvalue 
spread that is observed in the original system matrix that 
carries the acoustic impedances from the loudspeakers to 
the receivers inside the room. A promising way to 
compensate for these problems in the frequency domain has 
been shown, assuming that the matrix W that carries the 
real part of the acoustic impedances between sources is 
known. The use of matrix W here has been successfully 
incorporated in the solution in terms of regularization and 
system equalization. As a result, improvement of the spatial 
robustness and increment of the convergence rate was 
achieved.  
Although the calculation of W is a straightforward task for 
the simulation model, this information needs further 
theoretical and experimental investigation in order to be 
derived in a real problem. Obviously, additional sensing 
equipment, as for example sound pressure and sound 
velocity microphones near the diaphragms of the 
loudspeakers will be required [13, 14]. Also, the 
investigation must be adapted to the case of broadband 
signals as well. This should be the next step that will judge 
the applicability of the proposed technique for the case of a 
real sound reproduction system.   
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