
A comparison of molecular approaches for generating
sparse and structured multiresolution representations of

audio and music signals

Bob Sturma, John Shynka, Aaron McLeranb, Curtis Roadsb and Laurent
Daudetc

aUniversity of California, Box 117, Department of Electrical and Computer Engineering,
Santa Barbara, CA 93106, USA

bUniversity of California, Media Arts and Technology Program, Santa Barbara, CA 93106,
USA

cUPMC Univ Paris 06, LAM / IJLRA, 11 rue de Lourmel, 75015 Paris, France
boblsturm@ece.ucsb.edu

Acoustics 08 Paris

9943



We compare the characteristics and performance of joint (single-step) and sequential (two-step)
approaches for creating sparse and structured acoustic signal representations derived using overcomplete
methods (OMs). A joint approach, such as molecular matching pursuit (MMP), attempts to find
coherent structures in a signal as part of the decomposition process, while a sequential approach, such
as agglomerative clustering (AC), attempts to find coherent structures after the signal decomposition.
We review each approach, and examine their performance using real audio and music signals.

1 Introduction

Acoustic signals exhibit a wide variety of structures,
such as the impulses and resonances of musical instru-
ments. Such instruments possess unique and identifiable
structures consisting of general high-level features, such
as pitch, vibrato, and timbre, and specific low-level char-
acteristics, such as attack time and harmonic relation-
ships. These structures can be viewed as “content” that
one might use for applications of analysis, discrimina-
tion, and transformation. To work at such diverse levels
of detail, one needs a method that is capable of effi-
ciently and meaningfully representing content in a flex-
ible manner. Sparse approximations, or overcomplete
methods (OMs), aim to provide such representations.

OMs attempt to overcome the limitations of orthogo-
nal signal transformations (e.g., Fourier) by generalizing
the transformation process to a decomposition based on
an arbitrarily specified set (dictionary) of time-localized
functions (atoms). Instead of assuming a signal will be
well-described by a specific basis, OMs use dictionaries
of atoms that can be specified without orthogonality re-
strictions. An atom can take any shape and scale, and
might even be tuned to different structures expected in
a signal, such as transients and tonals [1], or to partic-
ular musical instruments [2]. Compared to the weights
of a localized Fourier basis, an atomic representation
resulting from OMs can manifest a more informative
representation of the structures in a signal.

While OMs can significantly reduce the dimensional-
ity of a signal, the significance of each atom to particular
content of that signal may not be clear. For instance,
the relationship of an atom of a particular scale to con-
tent at a larger scale may not be evident. We have thus
sought ways to make more clear these relationships by
creating sparse and structured representations through
OMs using molecules of atoms [1–3]. The basic idea of
these methods is to group atoms into structurally sig-
nificant components. In a joint approach, the decompo-
sition process adapts the atom selection criteria to local
aspects of the signal, such as tonalicity. In a sequen-
tial approach, atoms of a completed decomposition are
grouped together using rules and measures of similarity,
such as time-frequency (TF) overlap. After reviewing
OMs, we describe these two approaches, and then dis-
cuss their application to real audio signals.

2 Overcomplete Methods

Consider a complex K-dimensional vector space XK ∈
CK with an inner product between two vectors xi,xj ∈
XK defined as 〈xi,xj〉. The `2-norm of any xi ∈ XK
is given by ||xi||2 =

√
xHi xi where H denotes complex

conjugate transpose. Let the dictionary be described by
the set {di ∈ XK : ||di||2 = 1}, which can be expressed

in matrix form as D = [d1|d2| · · · |dN ]K×N . Now, given
x ∈ XK , a solution to the following problem is desired:

min f
(
C(s), D(x, r)

)
subject to x = Ds + r (1)

where f(·) is composed of a cost function C(s) of the
dictionary weights s ∈ CN , and a distortion measure
D(x, r) using the original signal and an error r. This
joint-minimization is often contradictory in that decreas-
ing one quantity can increase the other. One can thus
fix either function and minimize the other. Matching
pursuit (MP) [4] is an iterative descent OM that finds
good solutions to (1) quickly by minimizing the residual
energy at each step. Its solutions, however, are often
suboptimal with respect to sparsity [5], which may or
may not be important, depending on the intended ap-
plication of an approximation.

MP proceeds as follows. Given a signal x ∈ CK
and dictionary D ∈ CK×N , the output at the nth iter-
ation is the representation {H(n),a(n), r(n)} such that
x = H(n)a(n) + r(n) where the columns of H(n) =
[h0|h1| · · · |hn−1]K×n are atoms selected from D, and
a(n) = [a0, . . . , an−1]T contains their weights. The nth
order residual is r(n) = x − H(n)a(n) where n refers
to the decomposition iteration, and is not the same as
the time index k of the signal. The nth iteration of MP
finds a new atom and its weight by

hn = arg max
d∈D
|〈d, r(n)〉| (2)

an = 〈hn, r(n)〉, (3)

with r(0) ≡ x. After updating H(n + 1) = [H(n)|hn]
and a(n + 1) = [aT (n), an]T , the new residual is given
by r(n+ 1) = x−H(n+ 1)a(n+ 1) = r(n)− anhn, and
the process repeats until some stopping criteria are met.
When n = 1, MP is equivalent to the codeword selection
of gain-shape vector quantization [4, 6]. OMs can be
viewed as generalizations of this process to finding the
best n vectors from D with respect to a cost/distortion
criterion [7].

3 Molecular Representations

Figure 1 shows an audio signal represented in the TF
plane. The spectrogram was created with a 46 ms Hann
window and a uniform hop of 2 ms. The sparse approxi-
mation was found using MP and a multiscale dictionary
of modulated and translated Hann windows (decom-
posed until the signal-to-residual energy ratio (SRR)
= 30 dB). While the spectrogram contains 206,720 val-
ues, the sparse approximation consists of only 2,456
terms. To extract structural information from these
TF representations, one must relate each element to its
neighbors and to the content they represent together.
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Figure 1: Segment of a bird call in time-frequency (TF)
domain via a spectrogram (top), and a superposition of

TF tiles of atoms found by MP (bottom).

Assuming a model of sines plus noise, the McAulay-
Quatieri algorithm (MQA) [8] performs such an analysis
using the spectrogram, distilling it into a set of parame-
ters controlling sinusoids and noise sources to synthesize
the original signal. It can clearly be seen, however, that
working in the low-dimensional space of a sparse approx-
imation can provide a considerable advantage because
the atoms embody a high level of significance with re-
spect to signal structures. For instance, in Fig. 1, longer
atoms represent relatively stationary content.

Using OMs, we want to find and delimit significant
structures in acoustic signals by grouping atoms into
molecules that have particular functions in the signal.
This can provide sparse representations having many
different levels of content, from a high level of coarse
phrasing or source discrimination, to a middle level of
individual notes or voices, to a low level of transients
and partials. We now review two methods for building
such sparse and structured representations: a joint (one-
step) approach where molecules are constructed during
the decomposition process, and a sequential (two-step)
approach where molecules are built after the decompo-
sition process.

3.1 Joint Approach: Molecular MP

Molecular MP (MMP) [1] is an OM that decomposes a
signal by extracting groups of atoms that serve either
a tonal or a transient function in the signal. It accel-
erates the MP decomposition process by taking advan-
tage of the mutually exclusive properties of each type of
structure. Each atom of a molecule is found in relation
to others according to specified rules for each structure
type. The dictionary used in [1] is a union of two sets of
atoms: windowed cosines (C) and dyadic wavelets (W).

The tonal contents of a signal are represented solely
by atoms selected from C, which is built from a mod-
ified discrete cosine transform (MDCT) basis [9] with
constant scale s > 0 and hop size s/2, a unique trans-
lation index p ∈ Z, and modulation frequency index
l = 0, 1, . . . , s/2. Each MDCT atom is given by

hC(k; s, l, p) = Ys,l,pf(k − ps/2; s)

× cos
[

2π
s

(
k +

s/2 + 1
2

− ps/2
)(

l +
1
2

)]
(4)

where the window f(k; s) satisfies a perfect time-domain
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Figure 2: MDCT atoms hC(k; 1024, l, 0), l ∈ {0, . . . , 9}.

aliasing cancelation constraint, such as the sine window

f(k; s) =

{
sin
(
π
s (k + 0.5)

)
, k = 0, 1, . . . , s− 1

0, else.
(5)

Finally, Ys,l,p is a scalar that makes the atom have unit
norm. Ten atoms of C are shown in Fig. 2 for s = 1024.

The transient contents of a signal are represented
solely by atoms selected from W, which are defined by
dilating and translating a generating wavelet w0(t)

gW(t; j, u) =
1√
2j
w0

(
t− u

2j

)
(6)

with the property that each wavelet with scale index
j > 1 can be described as a linear combination of two
“children” wavelets of scale index j − 1. The set W
thus forms a family of translated dyadic wavelet trees
with maximum scale J . Figure 3 shows the wavelets
generated using a Daubechies filter of length 4 [10] for
scale indices j ∈ {1, . . . , 9}.
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Figure 3: Wavelet atoms hW(k; j, 0), j ∈ {1, . . . , 9}.

3.1.1 Measuring Tonal and Transient Content

Let hs,l,p ← hC(k; s, l, p) and gj,u ← gW(k; j, u) be vec-
tor forms of the atoms in each subdictionary, and define
the following functions embodying the inner products of
the nth-order residual r(n):

β(s, l, p) ∆= 〈hs,l,p, r(n)〉, α(j, u) ∆= 〈gj,u, r(n)〉. (7)

At iteration n, the values in (7) are evaluated to deter-
mine whether a tonal or transient molecule is extracted.
Due to the construction of C ∪W, these quantities can
be calculated quickly using the MDCT, and a multirate
perfect reconstruction filterbank [10].

The strength of tonal content is gauged using the
local tonality index, defined as

T (s, l, p) ∆=
1
W

W−1∑
i=0

Ss,l,p+i{r(n)} (8)
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Figure 4: Logarithm of local tonality index for a
glockenspiel calculated using s = 1024 and W = 5.

where W > 0, and the localized “pseudo-spectrum” of
r(n) is defined as

S2
s,l,p{r(n)} ∆=β2(s, l, p)

+ [β(s, l + 1, p)− β(s, l − 1, p)]2 (9)

for l = 0, 1, . . . , s/2− 1, and β(s,−1, p) = β(s, s/2, p) =
0. The pseudo-spectrum gauges the spread of energy
into adjacent frequency bins l + 1 and l − 1. Thus, (8)
is a W -order causal moving average of (9). T (s, l, p)
quantifies the strength of a tonal component centered on
frequency l over a duration of W frames, independent of
its phase. Figure 4 shows the local tonality index using
s = 1024 and W = 5 for a monophonic musical signal.

To determine the strength of transient content, MMP
uses the modulus of regularity, defined as

κ(2u) ∆=
1
J

∑
(j,u)∈I2u

|α(j, u)| (10)

where I2u contains the scales and translations of wavelets
related to the smallest scale wavelet translated to 2u.
The measure κ(2u) is thus the average magnitude of
the inner products of r(n) with all the wavelets in a
connected tree branch from the smallest scale (j = 1)
wavelet, to the largest scale J translated to b2u/2Jc.

3.1.2 MMP Decomposition Process

Each iteration considers T (s, l, p) and κ(2u), computed
from the residual signal, to extract either a tonal or
transient molecule based on the following decision:

max
s,l,p
T (s, l, p)

tonal
≷

transient
max
u

κ(2u). (11)

The decomposition process stops when both sides are
less than some small ε > 0, which signifies that the
residual no longer contains tonal and transient content.

A tonal molecule can be arbitrarily long, and is built
around the frequency index l0 of the maximum value
of T (s, l, p). MMP searches for atoms within one fre-
quency index of l0, i.e., [l0 − 1, l0, l0 + 1], and the trans-
lation indices [pstart, pend], found using endpoint detec-
tion on Ss,l0,p{r(n)}. MMP subsumes into a set at step
n the parameters and coefficients of the atoms in C
that have a projection magnitude exceeding ε for p ∈
{pstart, . . . , pend} and l ∈ {l0 − 1, l0, l0 + 1}, i.e.,

MC
n = {s, l, p, β(s, l, p) : |β(s, l, p)| > ε}. (12)
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Figure 5: Modulus of regularity (top) for a
glockenspiel, using J = 9 and ε = 0.02. Relevant signal

segment (middle). Extracted transient (bottom).

MMP builds a transient molecule by pruning the
wavelet tree associated with the maximum modulus of
regularity. Figure 5 shows an example for a wavelet tree
containing transient content in the signal seen in Fig.
4. Each branch of this fully connected tree is pruned
starting at the smallest scale (j = 1) until |α(j, u)| < ε
for some j < J . The remaining fully connected tree thus
constitutes a transient molecule at step n:

MW
n = {j, u, α(j, u) : |α(j, u)| > ε}. (13)

3.2 Sequential Approach: AC

Another approach to building a structured representa-
tion is through agglomerative clustering (AC) of a sparse
decomposition [3]. This method builds molecules based
on measures of similarity between atoms. In this way
a sparse approximation is structured according to rules
specific to particular content. The dictionary used in [3]
is a set C of windowed cosines of multiple scales s

hC(k; s, ω, u, φ) = Ys,ωf(k−u; s) cos(ω[k−u] +φ) (14)

where f(k; s) is a Hann window with support s, u is a
translation, 0 ≤ ω ≤ π/2 and 0 ≤ φ < 2π are modula-
tion parameters, and Ys,ω is a scalar making each atom
have unit norm. The atom parameters are discretized in
the following way: s ∈ {2r, r = 1, 2, . . . , 14}, u = zs/2
for z ∈ Z, and ω ∈ {2πl/s, l = 0, 1, . . . , s/2}. Phase φ is
not discretized since complex atoms are used.

3.2.1 Measuring Atomic Similarity

The basic principle of AC is that a pair of atoms belong
to the same molecule if they are sufficiently similar. A
simple measure of similarity between a pair of atoms
{hγi

,hγj
}, where hγ ← hC(k; γ) is the vector form of

an atom in C, and γ = {s, ω, u, φ}, is the magnitude of
their analytic inner product

ρij
∆=
∣∣〈h̃γi , h̃γj 〉

∣∣ (15)

where h̃γ is the analytic form of hγ , e.g., for (14)

h̃C(k; γ) = Ys,ωf(k − u; s)e
√
−1(ω[k−u]+φ). (16)
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Figure 6: Adjacency matrix and agglomeration process.
Boxes contain unique atoms included in the molecule.

Thus, a pair of atoms is similar if ρij ≥ ρmin, where the
correlation threshold 0 ≤ ρmin ≤ 1. In effect, this rule
implies that atoms are similar if they sufficiently overlap
in time and frequency.

While the previous agglomeration rule is reasonable
for pairs of atoms that have a narrow bandwidth, e.g.,
large scale atoms, it may not be useful for short-scale
atoms. Such atoms can be grouped by defining similar-
ity using the difference between their center-times, i.e.,

µij
∆=µmin −

∣∣(ui + si/2)− (uj + sj/2)
∣∣ (17)

where the distance threshold µmin > 0. If µij ≥ 0, then
the pair of atoms are similar.

3.2.2 Agglomerative Clustering Process

Through the similarity measures described above, AC
finds and delimits tonal and transient content in an nth-
order sparse approximation {H(n),a(n), r(n)}. Assum-
ing that large-scale atoms represent tonal content, and
small-scale atoms represent transient content, the atoms
contained in H(n) are separated into two sets based on
their scales: H>σ = {hC(k; γ) : s > σ} for atoms with
scales > σ, and H≤σ = {hC(k; γ) : s ≤ σ} otherwise.
Since these two sets are disjoint, i.e., |H>σ|+|H≤σ| = n,
tonal and transient molecules can be built in parallel.

From the first set H>σ, AC constructs a binary ad-
jacency matrix A(n) with entries assigned as follows:

aij =

{
1, ρij ≥ ρmin, 1 < j ≤ |H>σ|, i ≤ j
0, else.

(18)

This upper-triangular matrix specifies which pairs of
atoms are sufficiently similar. By traversing the ele-
ments of A(n), AC agglomerates atom pairs into tonal
molecules. This is done until all nonzero entries of the
adjacency matrix have been searched. A new molecule is
then started using the remaining atoms. This process is
the same for constructing transient molecules, but using
a binary adjacency matrix B(n) having entries

bij =

{
1, µij ≥ 0, 1 < j ≤ |H≤σ|, i ≤ j
0, else.

(19)
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Figure 7: SRR for MMP and AC as a function of
molecule number for a glockenspiel.
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Figure 8: Glockenspiel segment approximated by tonal
and transient molecules produced by MMP and AC.

Figure 6 illustrates the agglomeration process.

4 Simulation Results

The following settings were used in the computer sim-
ulations. For MMP, the MDCT uses a sine window
of length s = 1024 samples, the Daubechies filter of
length 4 is used in the wavelet transform, the maximum
wavelet scale is J = 9 (512 samples), the order in (8) is
W = 5, and ε = 0.02. In AC, σ = 600, ρmin = 0.01, and
µmin = 30 ms. AC is performed with decompositions
having SRR = 30 dB found by MP.

For the signal shown in Fig. 4, MMP extracts 98
molecules (93 tonal, 5 transient), representing the signal
to SRR = 26.8 dB. From a sparse approximation of 976
Hann atoms, AC produces 71 molecules (62 tonal, 9
transient) of two or more atoms, representing the signal
with an SRR = 23.19 dB. The growth of the SRR for
each method as a function of molecule number is shown
in Fig. 7. From (11), MMP extracts molecules in the
order of their energy. The molecule order for AC is
instead related to the signal time-line [3].

Segments of the resulting waveforms produced by
each method are shown in Fig. 8. The greatest dif-
ference between the two methods can be seen in the
transient molecules. Synthesizing the original signal us-
ing the molecules generated from each method produces
similar sounding results, but the residuals of each sound
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Figure 9: Segment of the bird call shown in Fig. 1
structured into tonal molecules by AC and MMP.

Grayscale is used to offset molecules.

quite different, with MMP producing a “buzzy” resid-
ual. The transient molecules produced by MMP sound
“crunchy,” while those of AC are more impulsive. Both
the transient and tonal signals of each method suffer
from pre-echo. An extension to MMP to handle pre-
echo is presented in [1], but was not implemented here.

Finally, returning to the example in Fig. 1, the re-
sulting structured representations using MMP and AC
are shown in Fig. 9, where the outline of the TF region
of each molecule is shown. Observe that MMP cannot
accommodate sweeping frequencies, which are broken
into smaller units, whereas AC is able to handle these
(see, e.g., the range 7.2-7.6 s). However, AC misses sev-
eral significant portions of the signal, such as the onset
at 6.8 s in the harmonics. Note also the narrowband
“skewers” extending into TF regions that have no en-
ergy in the spectrogram in Fig. 1, e.g., the atom at
about 4 kHz starting near 6.7 s. These are caused by
the greedy atom selection of MP in (2) [11].

5 Conclusion

We have reviewed two methods for generating sparse
and structured representations of acoustic signals: a
joint approach (MMP) that builds structures as part of
the decomposition process, and a sequential approach
(AC) that builds structures from a sparse approxima-
tion using rules for clustering. We have also illustrated
their properties using a musical and ecological signal.

With its choice of analysis dictionaries, MMP is re-
markably fast when it employs a MDCT for finding and
building tonal molecules, and a critically sampled mul-
tirate perfect reconstruction filterbank for the transient
molecules. These choices, however, make the molecules
translation variant. An example of this is clearly seen in
Fig. 5 where the transient occurs in the latter half of the
wavelet tree. This could cause a portion of a transient
to be lost or split across wavelet trees. The definition of
the local tonality index in (8) also causes problems when
a signal has changing frequencies. We see this in Fig. 9
where such instances are split over several molecules.

On the other hand, because it relies on an OM, AC is
much slower for building structured representations, and
it inherits the problems of OMs [11], but one is free to
use any dictionary. Furthermore, the similarity rules are

flexible, and the general ones presented here are able to
handle signals with changing frequency content. With
a multiresolution dictionary providing a sufficiently re-
dundant tiling of the TF plane, AC is less sensitive to
translation than MMP.

The structured representations resulting from these
methods can be used in several applications, includ-
ing signal analysis, coding, content discrimination, and
transformation. There is also the possibility of using
these structured representations for generating sparse
thumbnails of signal content for database indexing and
querying. Future work will examine more complex rules
for agglomeration, the effects of noise and polyphony,
and a combination of the two methods such that AC is
performed on the results of MMP.
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