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For reasons of cost and practicality, the laboratory measurement of the acoustic transmission and re-
flection properties of materials for use in underwater applications are typically performed on samples
of limited dimensions — and with the source and receiver separated by relatively short distances —
resulting in a non-planar measurement field. The influence of this on the resulting measurements is in-
vestigated in this paper. In particular, for low frequency measurements the influence of the evanescent
wave contributions can become significant.
In this paper two alternative approaches are used to evaluate the transmission properties. The first
approach uses an asymptotic expansion of the fields in terms of wave front curvature: bounds are then
placed on the error in this expansion at low frequency using thin plate theory. The second method
decomposes the incident spherical wave into its plane wave components and integrates the resulting
transmitted waves numerically to evaluate the transmitted field. Results are compared and contrasted
for measurements in the frequency range 1 to 60 kHz for panels of simple elastic materials (steel and
Perspex (Poly(methyl methacrylate))). In addition the nature and significance of the modes of the panel
for evanescent waves are considered. The consequences for laboratory measurements are also outlined.
c© Crown Copyright 2008, Dstl.

1 Introduction

The reflection and transmission coefficients of a plane
wave incident on an infinite panel provide a convenient
means of characterising the acoustic properties of a ma-
terial. These are often measured using a limited size
panel; the finite size of the panel and measuring system
then impose limitations on the measurement. Of the
different sources of error, this paper is concerned with
those caused by the non-plane wave nature of the source.
That spherical wave components can cause deviations
of the measured transmission coefficient from the plane
wave result has been demonstrated before: in [1, 2] it
was shown that the plane wave spectrum of the source
can cause errors at high frequency, but the frequencies
considered were higher than those typically of interest
in many applications. A numerical study by Piquette
[3] indicated the presence of a potentially large, low fre-
quency effect. This was further studied by Shenderov
[4, 5]; these calculations show a much smaller effect than
that seen in [3].

In this paper the effect of an incident spherical wave
on a measurement of the transmission coefficient is re-
examined. It is shown that the transmitted pressure can
be written as an asymptotic expansion of the wavenum-
ber multiplied by the separation between the source and
the receiver, the first term of which gives the plane wave
transmission coefficient. When the plate is thin, explicit
analytic bounds are found on the error in this expan-
sion; these bounds suggest that, in order to ensure that
a measurement gives a reasonable approximation to the
plane wave transmission coefficient of a thin plate, the
separation between the source and receiver needs to be
larger by a factor of the fluid loading parameter than
that which would be deduced by looking at the asymp-
totic expansion alone. These bounds allow effects of the
order of those seen in [3] for some materials: in order to
examine the discrepancy between [3] and [4] the plane
wave spectrum is integrated using the full elastic trans-
mission coefficient. This gives results in agreement with
[4].

2 Asymptotic analysis and error
bounds

The starting point is to express the reflection and trans-
mission coefficients in terms of integrals over the plane
wave spectrum of the source. Consider a plate of thick-
ness, h, lying at the origin in the r− φ plane of a cylin-
drical co-ordinate system, (r, φ, z). It is surrounded on
both sides by an acoustic fluid of sound speed c, and is
insonified using a monopole source of angular frequency
ω, positioned at (0, 0, z0). The incident pressure field
along the z-axis, for z < z0, is thus given by

pi(z) =
a0

i

∫ ∞

0

1
β

eiβ(z0−z)α dα = −a0

R
eikR (1)

where k = ω/c, R = z0 − z and an overall time de-
pendence on exp(−iωt) has been ignored. The branch
cut for β =

√
k2 − α2 must be chosen such that β =

i
√

α2 − k2 as α →∞.
Using these definitions the reflected pressure, pr, and

the transmitted pressure, pt, can be written as

pr(z) =
a0

i

∫ ∞

0

1
β

R(α) eiβ(z+z0)α dα (2)

and
pt(z) =

a0

i

∫ ∞

0

1
β

T (α) eiβ(z0−z)α dα. (3)

R(α) and T (α) are then found by satisfying the stress
and displacement boundary conditions on the faces of
the plate [3]. For propagating components (α < k),
they are the reflection and transmission coefficients.

Attention will now be restricted to the transmission
coefficient, although similar results can be obtained for
the reflection coefficient. First the integral in (3) is split
into two parts — an integral over α < k and an integral
for α > k:

pt(z) =
a0

i

∫ k

0

1
β

T (α)eiβRα dα

+
a0

i

∫ ∞

k

1
β

T (α)eiβRα dα.

(4)

In the first integral the change of variable u = β/k is
made. The result is a Fourier integral whose asymptotics
can be treated using integration by parts [6]. For the
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second integral (the integral over the evanescent part of
the spectrum), changing variables to u = β/ik gives an
integral that can be treated using Watson’s Lemma [6].
Defining T̂ (u) = T (k(1− u2)

1
2 ) ≡ T (k cos θ) (where θ is

the angle from the normal to the panel), these integrals
become

I1 =
a0k

i

∫ 1

0

T̂ (u) eikR udu

= −a0e
ikR

R

(
T̂ (1)− 1

ikR
T̂ ′(1)

)

− a0T̂
′(0)

ikR2
+

a0k

i
ε1

(5)

and

I2 = −a0k

∫ ∞

0

T̂ (iu) e−kR udu

=
a0T̂

′(0)
ikR2

+
a0k

i
ε2,

(6)

were use has been made of the fact that T̂ (0) = 0.
Putting these two results together, the contribution

from the limit at u = 0 from the propagating integral,
I1, cancels the contribution from the limit in the evanes-
cent integral, I2. This can be shown to be true at all
orders of the asymptotic expansion. The result is (ig-
noring contributions of O(h/R))

pt = −a0

R
eikR

{
T̂ (1)− 1

ikR
T̂ ′(1)

}
+

a0k

2i
(ε1 + ε2) . (7)

This result is exact and the error terms ε1 and ε2 are
given by

ε1 = − 1
(kR)2

∫ 1

0

T̂ ′′(u) eikR udu, (8)

and

ε2 =
1
i

∫ ∞

0

(
T̂ (iu)− iT̂ ′(0)u

)
e−kR udu. (9)

The term in curly brackets in Eq. 7 is the measured
transmission coefficient, Tm. Due to the theorems gov-
erning the asymptotic forms of ε1 and ε2 implicit in Wat-
son’s Lemma and integration by parts [6], it can be seen
that

Tm ∼ T̂ (1)− 1
ikR

T̂ ′(1)+o

(
1

kR

)
, as kR →∞. (10)

Thus the leading order spherical correction to the mea-
sured transmission coefficient depends on the rate of
change of the plane wave transmission with angle, as
has been observed previously [1, 4]. It is tempting to
try to use (10) to determine the separation needed to
ensure that the corrections are smaller than a given ac-
curacy [4], however this is incorrect: the result (10) is a
statement about the limit kR → ∞. To estimate how
accurately (10) holds bounds must be found on the er-
ror terms, ε1 and ε2. Since these bounds necessitate an
analysis of the pole structure of T̂ (u) in the complex
u plane, the plate is now assumed to be thin. In this
case the poles are found to be related to the dispersion
curves of a fluid loaded thin plate. Crighton has shown

how approximate expressions for the bending wave so-
lutions could be found by expanding in the fluid loading
parameter ε, which is given by

ε =
ρ0

mc

√
B

m
, (11)

where ρ0 is the density of the fluid, m is the mass per
unit area of the plate and B is its bending stiffness.
Physically this is the ratio of the mass loading of the
fluid to the mass of the plate at the coincidence fre-
quency and is always expected to be a small parameter
for rigid plates [7]. This analysis was recently extended
to include the symmetric wave solutions [8].

It is useful to introduce ω̄, which is the frequency
scaled to the coincidence frequency on the plate, the
parameters αl and αp (defined in [8]) and δ = c2/c2

p.
The transmission coefficient is then given by

T̂ (u) =
2iεu

ω̄C(u)D(u)
[
(1− u2 − δ)

+ αpω̄
2(1− u2)

(
1− ω̄2(1− u2)2

)
+ αlω̄

2(1− u2 − δ)
(
1− ω̄2(1− u2)2

)] (12)

where

C(u) =
[
u(1− ω̄2(1− u2)2) +

2iε
ω̄

]
(13)

and

D(u) =
[
(1− u2 − δ)(u−2iεαlω̄)

− 2iεαpω̄(1− u2)
]
.

(14)

Maxima in the transmission coefficient and its deriva-
tives are associated with the factors C(u) and D(u)
in the denominator getting small. Since ε is expected
to be small (ε � 0.13 for steel in water and ε � 0.3
for Poly(methyl methacrylate) (PMMA) in water), the
peaks in T̂ ′′(u) are near u = 0 and u2 = 1− δ providing
ω̄ < 1 (and ω̄ = O(1)). An estimate of ε1 is thus ob-
tained by separating out these peaks and then placing
a crude bound on the remaining integral. The contribu-
tion from the peaks is then included as the maximum
value of the peaks multiplied by their width. Thus,

|ε1| � 1
(kR)2

{
σ

2ε2ω̄2
(
αl + αp

1−δ

)2 +
4(1− δ)σ
ε2α2

pδ
2ω̄

[
1 + O(ε2)

]

+
ω̄(1− 3σ)

2ε2

[
ω̄2

(
1 + 4ω̄2

)2
+ 64ε2

] 1
2

}

(15)

for some σ > ε2ω̄2[(1− δ)αl + αp]2.
Things are slightly more complicated for ε2; there

are two poles on the path of integration (in the case of
no material damping), as can be seen from the plot of
T over the evanescent part of the plane wave spectrum
shown in Fig. 1. One is at

u ∼
√

1
ω̄
− 1

(
1 +

ε

2(1− ω̄)
3
2

+ O(ε2)
)

, (16)

(ω̄ = O(1)) which is associated with coupling into the
subsonic mode in the plate for ω̄ < 1. The other looks
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like a Scholte-Stoneley wave and is at

u ∼ 2εαlω̄ +
2εαpω̄

1− δ

(
1− 4δω̄2ε2

1− δ

[
αl +

αp

1− δ

]2

+ O(ε4)
)

.

(17)

It is a coupled fluid-plate mode formed by coupling into
the plate at near grazing incidence. The result may be
evaluated using contour integration by deforming the
path of integration onto a new path at 45◦ to the real u
axis. The error ε2 is then given by finding the maximum
value of this (finite) path and adding the residues of the
poles crossed in deforming the path. Using standard
techniques [6] the result is found to be

|ε2| �
√

2

(1− δ)ε2ω̄2
(
αl + αp

1−δ

)2

(kR− σn)3

+ πe−2kRεω̄(αl+αp/(1−δ))

(18)

where
σn � ln 2

4εω̄
(
αl + αp

1−δ

) (19)

and kR has been chosen so that kR > σn (otherwise the
estimate for ε2 would depend on 1/(kR)2).
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Figure 1: Plot of the modulus of the transmission
coefficient for evanescent wave contributions showing
the presence of peaks due to Scholte-Stoneley and

subsonic modes.

Surprisingly, rather than being small when kR > 1
as one might expect from the asymptotic result (10),
the error terms (15) and (18) have a functional depen-
dence on εkR. This seems to imply that, in order to be
certain spherical wave corrections can be ignored one
needs to require εkR > 1, rather than kR > 1 as would
be deduced from the asymptotic result (10).

Fig. 2 shows a comparison of the thin plate trans-
mission coefficient with the modulus of Tm from (10),
together with the magnitudes of the bounds on ε1 and
ε2 calculated using the parameters for PMMA in Sec-
tion 3. This shows the close agreement of the asymp-
totic result to the plane wave result. The approxima-
tions used in deriving the bounds (15) and (18) break
down for ω̄ = O(ε) hence the low frequency behaviour
is not physical. Away from this region the bounds,
though small, are larger than would be expected from

(10) alone. When PMMA is replaced by steel however,
the bounds on ε1 and ε2 become large (Fig. 3): these
bounds would allow the effects seen in [3] however they
are upper bounds on the error only and are expected
to be conservative. To investigate the errors further re-
quires a numerical approach.
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Figure 2: Comparison of the plane wave transmission
coefficient with the first order spherical correction (10)
for a Perspex panel. Also shown are the magnitudes of
the error integrals, ε1 and ε2, and the associated error

in Tm.
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Figure 3: Plot of moduli of the plane wave
transmission coefficient and first order spherical wave

correction, together with magnitudes of the error
integrals for a steel panel.

3 Numerical calculations

An alternative approach is to use numerical integration
to obtain values for the transmitted pressure pt from
Eq.. (4). This enables the effective transmission coef-
ficient to be calculated, which can be expressed as an
Insertion Loss, IL, using IL = −20 log10(|Tm|). The
numerical integration of (4) is taken in two parts for
convenience with the ranges being divided as necessary
for efficiency. The transmission coefficient was imple-
mented using the expressions in [9] with a correction for
the water path replaced by the test panel.

Fig. 4 shows example calculations for a Perspex
(PMMA) panel 0.0127 m in thickness measured at a
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Figure 4: Calculated Insertion Loss for a 12.7 mm
Perspex plate for a plane wave (dashed line) and

spherical wave for a source-receiver distance of 2.0 m
(solid line). The contribution from the real part of the

spectrum for the spherical wave case is shown as a
dotted line.

distance of 2.0 m from the source. Note that the range
of the test panel from the source is not significant. In
this case the Insertion Loss for a plane wave increases
steadily from 1 kHz with a smooth maximum at about
54.5 kHz. The result of the first integral in (4) is shown
as a dotted line for frequencies above 10 kHz. This shows
a distinct departure from the plane wave result between
50 and 60 kHz; with a maximum departure of about
0.6 dB. The results are, however, obscured by a signif-
icant oscillatory component that grows in amplitude as
the frequency is reduced. This is the reason for only
presenting the results above 10 kHz. This oscillation is
associated with the non-zero contribution from the up-
per end of the integral over the real angle alpha. This
disappears when both parts of the integration in (4)
are performed, as the contribution from the lower limit
of the imaginary integral almost completely cancels out
that from the end of the real integral. The resulting
Insertion Loss follows the plane wave result very closely
for frequencies up to 20 kHz, and then lies slightly be-
low the plane wave result until the significant deviation
around 55 kHz.

This result indicates that at low frequencies the dif-
ferences between the effective transmission coefficient
for spherical waves and the plane wave transmission co-
efficient is very small. In this case less than 0.1 dB up
to 20 kHz.

The existence of the specific deviation at 55 kHz has
already been noted in [1]. In that case the transmission
coefficient was predicted using an approximate solution
for the effective transmission coefficient that was appro-
priate to a parametric array used as the source in [10].
In that case the integral was only performed over real
angles and was, therefore, limited to frequencies above
about 20 kHz. The experimental data obtained for a
source-hydrophone separation of 0.9 m in [1] is com-
pared with the results of the current calculation for a
spherical wave incidence and a separation of 0.9 m in
Fig. 5 .

Although not strictly equivalent (the experimental
data were obtained for a parametric beam rather than
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Figure 5: Comparison of calculated Insertion Loss for a
12.7 mm Perspex plate for a spherical wave and

observation ranges of 2.0 m (solid line) and 0.9 m
(dot-dashed line) with the plane wave result (dashed

line).

a point source) the plots show a number of features in
common. Firstly, over the range from 20 to 50 kHz
both the experiment and the model indicate an Insertion
Loss that is less than that for a plane wave. Secondly,
both experiment and theory show a characteristic devi-
ation from the plane wave result at about 55 kHz. The
spherical wave approach underestimates the peak loss;
however, if the apparent acoustic centre of the array is
assumed to be at its mid point, shortening the apparent
range, then the predicted loss increases.
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Figure 6: Comparison of calculated Insertion Loss for a
12.7 mm Perspex plate for a plane wave (dashed line)
and for a spherical wave (solid line) with experimental
results (points) obtained using a parametric array as a

source [1]. The source-receiver distance is 0.9 m.

The spherical wave approach also predicts that the
effective loss should smoothly decrease with reducing
frequency, and be very similar to the plane wave result
for the lowest frequencies. The effect of the measure-
ment range is shown in Fig. 6 which presents numerical
results for the effective spherical wave Insertion Loss for
separations of 0.9 m and 2.0 m. This indicates how the
peak loss at 55 kHz increases as the range reduces. It
also shows that the underestimate of loss between 20
and 50 kHz increases as the separation reduces. Finally
the results show that at the lowest frequencies there is
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a small negative loss, i.e., a transmission coefficient of
slightly greater than one for spherical wave. This effect
is larger at shorter ranges and is attributed to the ap-
parent change in position of the source caused by the
panel.

The numerical evaluation of the integrals in (4) is
more difficult for steel because of the lower material loss
and hence reduced width of the Insertion Loss peaks
contributing to the imaginary part of the integral. How-
ever the results presented in Fig. 7 show that the re-
sulting Insertion Loss for the spherical wave case is very
close to that for a plane wave, in agreement with [4].
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Figure 7: Comparison of calculated Insertion Loss for a
12.7 mm steel plate for a plane wave (dashed line) with

that for a spherical wave (solid line) for a
source-receiver distance of 2.0 m.

4 Discussion and Conclusions

The asymptotic expansion for the spherical wave trans-
mission coefficient (10) depends only on the plane wave
transmission coefficient and its derivatives at normal in-
cidence and would give a pressure at the receiver that
was lower, and thus a higher Insertion Loss, than would
be obtained using a plane wave. The bounds on the er-
ror integrals however depend on the whole plane wave
spectrum and turn out to be dominated by coupling into
the longitudinal wave for the integral over the real part
of the spectrum (ε1) and the Scholte-Stoneley mode for
the integral over the imaginary part of the spectrum
(ε2). The second of these would not be predicted by
the usual thin plate analysis [7] — though it is seen in
the numerical evaluation of the full elastic equations [5]
— and arises in [8] through the matching of the acous-
tic pressure to the normal stress at the surface of the
plate, allowing the formation of a Scholte-Stoneley type
wave below the coincidence frequency in addition to the
subsonic wave. Coupling into these modes can increase
the pressure at the receiver above that for a normally
incident plane wave.

These bounds are upper bounds on the error only,
however numerical integration of the plane wave spec-
trum for PMMA gives an Insertion Loss lower than the
plane wave result. This in part is due to shift in the ap-
parent position of the source which is of O(h/R) and has
been ignored in Eq. (7). The numerical integration also

shows a characteristic deviation from the plane wave re-
sult at about 55 kHz that agrees well with experiment.
This is above the coincidence frequency and the error
analysis would need to be extended to investigate this
effect.

The error analysis also indicates that the deviations
from the plane wave results should be larger for steel and
the integrals more difficult to evaluate numerically due
to the proximity of the poles to the path of the integral
over the evanescent part of the plane wave spectrum
when the material damping is small. This is likely to
be the cause of the discrepancy between the results of
[3] and [4]. The current results show that for realistic
separations the deviations from the plane wave results
are small. Only at very small source-receiver separa-
tions do the deviations become realistically measurable
at low frequencies, and then they are unlikely to be of
significance.
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