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Vaz”, 13083-970 Campinas, Brazil
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Spherical loudspeaker arrays have been used to generate non-uniform directivity patterns. It is known that the 
poor radiation efficiency of spherical sources and the loudspeaker electroacoustic behavior impose constraints on 
the directivity synthesis at low frequencies, which are aggravated as the source volume is made smaller. In this 
work, the effects of the enclosure design on the loudspeaker signal powers are analyzed. Two different 
approaches have been reported in literature, although quantitative comparisons have not been provided.  In the 
first approach, the drivers share the same enclosure volume and in the second, they have their own independent 
sealed cavities. Here, an analytical model that takes into account the interior and exterior acoustic coupling is 
used in order to evaluate the voltages that must feed the array drivers. It is shown that the signal powers can be 
reduced at low frequencies by letting the drivers share the same enclosure volume. However, this leads to 
controllability problems, since some natural frequencies of the enclosure are in the operation range of the 
spherical array. If controllability at natural frequencies is neglected, a simple lumped parameter model of the 
enclosure presents good agreement with the continuous model, indicating that heavy calculations may be 
unnecessary. 

1 Introduction 

A spherical loudspeaker array is an electroacoustic device 
with several drivers mounted on a sphere-like structure. 
Convex regular polyhedra (Platonic solids) are most 
commonly used due to their high symmetry. Unlike 
omnidirectional sources, each driver is fed independently in 
order to achieve non-uniform directivity patterns. 
These arrays have been developed mainly to provide 
electroacoustic music composers with spatialization tools 
and to reproduce the directivity of musical instruments, but 
other applications can be contemplated, as the measurement 
of room impulse responses for auralization purposes [1] and 
the information diffusion in privileged adjustable 
directions. Some remarkable works can be found in [2, 3, 4, 
5]. Although analysis and synthesis methods could be found 
in these works, there is still a lack of quantitative results 
concerning especially the voltages that must be applied to 
the drivers in order to achieve a given directivity pattern. 
It is known that synthesized patterns by compact 
loudspeaker arrays become less accurate as frequency 
increases. This can be dealt with by reducing the size of the 
loudspeaker array [2]. However, the poor radiation 
efficiency of spherical sources and the loudspeaker 
electroacoustic behavior impose severe constraints on the 
directivity synthesis at low frequencies, which are 
aggravated as the source volume is made smaller.  The low 
frequency performance of a spherical source can be 
improved by working on the enclosure design. Two 
different approaches have been reported in literature [1, 4, 
6], although quantitative comparisons have not been 
provided.  In the first approach, the drivers share the same 
enclosure volume and in the second, they have their own 
independent sealed cavities. 
Spherical harmonic functions constitute a natural basis for 
representation of sound source directivities, since they 
emerge from the solution of the Helmholtz equation in 
spherical coordinates. Therefore, the control strategy 
generally adopted is to provide the spherical array with 
some preprogrammed basic directivities corresponding to 
spherical harmonic patterns. Then, different directivities 
can be achieved simply by changing the gains associated 
with the basic directivities, so that it is not necessary to 
redesign the filters when a different target pattern is 
desired. 

In this work, the voltages that must feed the drivers of a 
spherical source in order to produce spherical harmonic 
patterns in the far-field are evaluated analytically. A 
continuous model and a lumped parameter model are used 
for this task. The driver signals corresponding to the two 
different enclosure designs mentioned above are compared. 
The sound fields radiated by the array are evaluated 
analytically, according to the multipole source model 
presented in [4]. 

2 Analysis and synthesis of radiation 
patterns 

2.1 Spherical array model 

A spherical loudspeaker array can be modeled as a set of 
vibrating spherical caps mounted on a rigid sphere. This 
model is briefly described here. The reader will find more 
details in [4]. 
Sound propagation of spherical sources is suitably 
described in the frequency domain by the Helmholtz 
equation in spherical coordinates. Since this equation is 
linear, the sound field produced by each cap can be 
evaluated separately and the total field obtained by 
superposition. 

Fig.1 Spherical source with one arbitrarily oriented cap. 

Figure 1 illustrates a spherical source with only one 
arbitrarily oriented cap. ( )z,y,xPc

r
 is the position of the 

center of the cap (note that it defines a symmetry axis), 

α0 

α 
α0

 

y

z

pP
r

cP
r

a 

a 

Acoustics 08 Paris

7338



 

( )z,y,xPp

r
 is the position of the point in which the sound 

pressure is evaluated, α is its angular coordinate, α0 is the 
angle that defines the cap size and a is the sphere radius. 
Now, let the cap oscillate with a constant radial velocity 
over its surface. Since this problem has a symmetry axis, 
the following boundary value problem governs the sound 
radiation: 
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where p is the complex sound pressure amplitude, k is the 
wave number, r is the radial coordinate, 1j −= , ω is the 
angular frequency, ρ0 is the equilibrium density of the 
medium and U0 is the amplitude of the radial velocity of the 
cap. 
Problem (I) can be solved analytically by the method of 
separation of variables, so that the sound radiated in a free-
field by the cap is (this solution was obtained by assuming a 
temporal dependence given by tje ω− ) 
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where hn
(1) is the spherical Hankel function of the first kind 

and order n, Pn is the Legendre polynomial of degree n and 
An is given by 
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where c0 is the sound speed and Un is 

 ( ) ( ) ( ) ( )( )01n01n00n cosαPcosαPkaU
2
1,kaU +− −=α  (3) 

Note that U0 can be made frequency dependent and observe 
that k, a and α0 are constants in problem (I), but the authors 
have preferred to write them explicitly in Eqs.(1) – (3) in 
order to emphasize the main non-dimensional parameters 
involved in the spherical cap design: ka, r/a and α0. 
Similarly, the interior sound propagation is governed by the 
following boundary value problem:  
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Problem (II) can also be solved analytically by the method 
of separation of variables, so that the inner field is 

 ( ) ( ) ( ) ( )∑
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=
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nn0n0 cosαPkrjka,Dα,r/a,ka,p  (4) 

where jn is the spherical Bessel function of order n and Dn is 
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2.2 Optimization 

The functions considered in the present work are defined on 
a spherical surface. These functions are sampled so that 

θt = tΔθ and ϕm = mΔϕ; where θ is the elevation angle, ϕ is 
the azimuth angle, t = 0, 1, 2 … T-1 and m = 0, 1, 2 … M-
1. Then, s = TM is the number of samples, Δθ = 1800/(T-1) 
and Δϕ = 3600/M. The meshed spherical surface motivates 
the use of the following inner product: 

 Wuvvu, H=    (6) 

where u, v ∈ Cs and ss x
+∈RW . W is diagonal and it 

contains non-dimensional area weight factors that are 
determined by surface integration over appropriate sections 
of the sphere. Thus, the diagonal terms of W, wi, are given 
by  
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where i = mT + t + 1. 

In this work, the spherical array capability in reproducing 
spherical harmonic functions is studied. These functions 
constitute a natural basis for directivity representation since 
they emerge from the solution of the Helmholtz equation in 
spherical coordinates. A spherical harmonic function of 
degree n and order m is given by the following equation 
[7]: 

 ( ) ( ) ( ) ( )
( ) ( )θcosPe

!mn
!mn
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+
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where -n ≤ m ≤ n, m ≥ 0 and m
nP  is an associated Legendre 

function of the first kind of degree n and order m. Spherical 
harmonics so defined are orthonormal functions. 

It is known that function spaces spanned by spherical 
harmonics of the same degree are linear subspaces that are 
invariant with respect to rigid rotation through spatial 
angles [8]. For example, if a given pattern is in the 
subspace generated only by harmonics of degree 3, any 
rotation of this pattern also possesses a spherical harmonic 
expansion consisting only of harmonics of degree 3. Then, 
if bn ∈ Cs contains samples of a function in the subspace 
generated by spherical harmonics of degree n, it can be 
expressed as bn = Bncn, where cn ∈ C2n+1 contains 
coefficients and Bn ∈ Cs x 2n+1 is a matrix whose columns 
contain spherical harmonics of degree n and orders from –n 
to n. 

Now, let A(ka, r/a, α0) ∈ Cs x L have the directivities of the 
L drivers of the spherical array as columns that are obtained 
by letting U0 = 1 in Eq.(3), and x(ka, r/a, α0) ∈ CL contain 
driver velocities, i.e., U0 values for each driver. So, due to 
the superposition principle, the following optimization 
problem can be formulated, which must be solved for each 
ka for a given array geometry: 

(II)   
2nnx

cBAx −min  

This is a well-known convex optimization problem (least-
squares) whose solution is given by [9] 
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 x* = ( AH W A )-1 AH W Bn cn  (9) 

Now, let 1=n
H
ncc  and Xn

*(ka, r/a, α0) ∈ CL x 2n+1 have the 
optimal cap velocities associated with the 2n+1 columns of 
Bn. Then, maximum and minimum singular values of 
W1/2(AXn

* - Bn) provide, respectively, upper and lower 
error bounds associated with the subspace spanned by 
spherical harmonics of degree n. The directivity patterns 
associated with such bounds can be determined by 
examining the right-singular vectors obtained in the 
singular value decomposition [3]. 

3 Electrodynamical loudspeaker 
model 

In order to evaluate the electrical tensions that must feed 
the drivers so that they achieve optimum velocities given by 
Eq.(9), an electroacoustic model of the source is used. 
Let many drivers share the same enclosure. Application of 
second Newton’s law and Fourier transform for the n-th 
driver yields to 

 ( ) en

L

1l
lln

(int)
nl

(ext)
nlnnm FVSSVZ =φ−φ+∑

=
 (10) 

where Zmn is the mechanical impedance of the n-th driver, 
Vi is the diaphragm velocity of the i-th driver, L is the 
number of drivers, Si is the effective area of the i-th driver 
and Fen is the Lorenz force. (int)

nlφ and (ext)
nlφ contain, 

respectively, interior and exterior acoustic coupling 
between drivers and they are given by 
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nl VS
P

=φ  (11) 

and 
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=φ  (12) 

where (ext)
nlP and (int)

nlP are, respectively, the external and 
internal effective pressure acting on the n-th driver due to 
the movement of the l-th driver. 
Fen can be evaluated by Eq.(13). 
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en VZe

R
lbF −=  (13) 

where bn is the magnetic flux density in the n-th driver air 
gap, ln is the length of the n-th voice-coil conductor in 
magnetic field, Ren is the electrical resistance of the n-th 
voice-coil, egn is the tension of the n-th electrical source and 

( ) en
2

nnmen RlbZ ÷=  is the mechanical equivalent impedance 
of Ren. 
Finally, substitution of Eq. (13) in (10) yields to 
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Then, voltages that must feed the drivers so that the 
spherical array could reproduce a given pattern are obtained 
by letting V = x*. 

(ext)
nlφ and (int)

nlφ can be obtained by letting kr = ka in Eqs.(1) 
and (4), respectively, so that the sound pressure can be 
evaluated at the inner and outer surface of the sphere. On 
the other hand, at low frequencies, a simple lumped 
parameter model can be used to calculate the internal 
coupling between drivers by letting [10] 
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where CBnl is the acoustic compliance of the enclosure. If 
VB is the total enclosure volume, then CBnl is given by [10] 
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In addition, if the external acoustic coupling is ignored, 
(ext)
nlφ can be approximated by the radiation impedance of a 

piston mounted on an infinite baffle, which is [11] 
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where apn is the effective radius of the n-th driver 
diaphragm, J1 is the Bessel function of first kind and order 
1, H1 is the Struve function of order 1 and δnl is the 
Kronecker delta. 
If each driver has its own sealed enclosure, Eq. (14) still 
holds, but the enclosure acoustic stiffness (1/CBnl) must be 
evaluated according to Eq.(18) instead of Eq.(16). 

 nl
Bn

2
00

Bnl

δ
V

cρ
C

1
=  (18) 

where VBn is the volume of the n-th enclosure. 

4 Results 

Here, some simulation results are presented in order to 
illustrate the effects of the enclosure design on the voltage 
that must feed the drivers of an icosahedral array in order to 
achieve some directivity patterns. Two different approaches 
were considered.  In the first one, the drivers share the same 
enclosure volume and in the second, they have their own 
independent sealed cavities. 
The following values were used in the simulations: L = 20 
(icosahedral source), s = 79x40 = 3160 mesh points, 
c0 = 343m/s, ρ0 = 1.21kg/m3, α0 = 200 and r/a = 20; where r 
is the radius of the sphere on which the sound pressure is 
evaluated. The Legendre polynomial series presented in 
Eq.(1) was truncated to 10 terms in order to evaluate the 
radiated fields of the spherical source at r. However, 30 
terms were retained in Eqs.(1) and (4) in order to compute 
the sound pressure on the spherical caps. 
All drivers were supposed to be equal with the following 
characteristics: 3" drivers, resonance frequency 80Hz, 
mechanical quality factor 8.0, electrical quality factor 0.73, 
total moving mass 0.0043kg, Ren = 7.6Ω and 
Sn = 0.0031m2. Since α0 = 20°, Sn = 0.0031m2 and r/a = 20, 
the radius of the spherical source and evaluation surface are 
a = 0.0918 m and r = 1.84 m, respectively. Eq.(8) was 
multiplied by a constant in order to provide the target 
directivity patterns with a constant sound pressure level of 
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80dB (ref. 20μPa) at a distance r from the array center in 
the main radiation lobe. The signals were evaluated from 
ka = 0.05 to ka = 6, i.e., from f = 29.7 Hz to f = 3.6 kHz. 
Figure 1 shows the root mean square error (RMSE) that 
arise in reproducing functions in spherical harmonic 
subspaces up to degree 3 by an icosahedral source. Theses 
curves were obtained as described in the end of session 2.2. 
Only one curve was plotted for n = 0, 1 and 2 for clarity, 
since computations have shown that upper and lower 
bounds for each one of these subspaces are not 
distinguishable. It can be verified that synthesized basic 
patterns become less accurate as ka and n increase. 

 
Fig.1 Normalized RMSE arisen in reproducing functions in 
the subspace spanned by spherical harmonics of degree n 
by an icosahedral source. 

Figures 2 to 5 show voltage magnitude that must feed the 
drivers in order to synthesize spherical harmonic functions. 
A comparison between drivers sharing the same enclosure 
(“common enclosure” curves) and drivers with its own 
sealed enclosure (“own enclosure” curve) is provided. For 
the common enclosure design, two different curves are 
presented according to the method used to evaluate 

(ext)
nlφ and (int)

nlφ . They were calculated by using Eqs.(1) and 
(4) (continuous model) and by using Eqs.(15) and (17) 
(lumped model). The vertical red lines indicate the lowest 
natural frequencies of the spherical cavity. 

 
Fig.2 Voltage magnitude that must feed the drivers in order 
to synthesize the spherical harmonic of degree 0 and order 
0 (monopole) 

If the drivers share the same enclosure, Figs.2-5 show that 
there are no remarkable differences between the voltages 
evaluated by the lumped and the continuous model, except 

for frequencies corresponding to the natural frequencies of 
the spherical cavity, in which controllability problems can 
be identified by the continuous model. The lowest 4 natural 
frequencies of a rigid spherical cavity correspond to the 
following ka values: 2.0816, 3.3421, 4.4934 and 5.9404. 
Then, it is suggested that driver voltages can be evaluated 
by using such a simple lumped parameter model for the 
enclosure and by neglecting external interaction between 
the drivers, so that heavy calculations involved in the 
continuous modeling may be unnecessary. 
Due to the fact that all drivers are equal, the symmetry of 
the icosahedron and the uniformity of the directivity 
pattern, all drivers must be feed by the same voltage in 
order to produce an omnidirectional sound field. In 
addition, voltages evaluated by the lumped model remain 
unchanged whether the drivers have their own sealed 
cavities or share the same enclosure, as can be verified in 
Fig.2.  

 
Fig.3 Voltage magnitude that must feed the most solicited 
drivers in order to synthesize the spherical harmonic of 
degree 1 and order 0 (dipole). 

Figures 3 to 5 indicate that there is a single frequency value 
in the low-frequency range at which the “common 
enclosure” and “own enclosure” approaches lead to the 
same voltage magnitude. Lower voltages are achieved by 
the “common enclosure” design at frequencies lower than 
this value. Otherwise, “own enclosure” design presents 
some improvements. The transition frequency can be 
adjusted by changing the driver characteristics. However, 
for the icosahedral source considered in this work, only 
dipole synthesis can take advantage of the improvements 
provided by the common enclosure approach, since 
unachievable voltages are necessary to produce spherical 
harmonics other than monopole and dipoles at low 
frequencies.  
High voltages must be applied to the drivers at low 
frequencies due to their electroacoustic behavior and the 
poor radiation efficiency of spherical sources at low ka 
values, which implies high driver velocities. One can deal 
with these constraints by using larger drivers, i.e., by 
increasing the source radius. This provides lower driver 
velocities and high enclosure compliance. However, for a 
given frequency, the error associated with directivity 
synthesis is increased as can be verified in Fig.1, so that the 
operation range of the array is reduced. Then, a spherical 
source design is a compromise between high and low 
frequency accuracy. 
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Fig.4 Voltage magnitude that must feed the most solicited 
drivers in order to synthesize the spherical harmonic of 
degree 2 and order 0 (quadrupole). 

 
Fig.5 Voltage magnitude that must feed the most solicited 
drivers in order to synthesize the spherical harmonic of 
degree 3 and order 0. 

5 Conclusion 

In this work, the voltages that must feed the drivers of an 
icosahedral source in order to produce spherical harmonic 
patterns were evaluated and the effect of the enclosure 
design on the signals was investigated. In addition, a 
continuous model and a lumped one were used to evaluate 
the acoustic interaction between drivers that share the same 
enclosure and a comparison was provided. 
The voltages are greatly affected by the source enclosure 
design, except for the monopole synthesis. At low 
frequencies, it is possible to obtain weaker power signals by 
letting the drivers share the same enclosure volume, instead 
of provide each one of them with its own independent 
sealed cavity. However, letting the drivers share the same 
enclosure leads to controllability problems, since some 
natural frequencies of the spherical cavity are in the 
operation range of the spherical array. It is expected that 
this can be dealt with by adding absorbing materials in the 
cavity. 
No remarkable differences were observed between the 
voltages evaluated by the lumped and the continuous 
model, except for frequencies corresponding to the natural 
frequencies of the spherical cavity. This suggests that driver 
voltages can be evaluated by using a simple lumped 
parameter model for the enclosure and by neglecting 
external interaction between the drivers, so that heavy 

calculations involved in the continuous modeling may be 
unnecessary. 
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