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It is known that forces generated by high-level acoustic waves can compensate for the weight of small samples, 
which can be suspended in a fluid. To achieve this, a standing wave is created in a resonant enclosure, which can 
be open or closed to the external medium. This phenomenon, called Acoustic levitation, has numerous 
applications in containerless study and processing of materials. Although it is possible to levitate a sample for 
long periods of time, instabilities can appear under certain conditions. One of the causes of oscillational 
instabilities is the change of the resonance frequency of the cavity due to the presence of the levitated object. The 
Boltzmann-Ehrenfest principle has been used to obtain an analytical expression for the resonance frequency shift 
in a cylindrical cavity produced by a small sphere, with kR < 1, where k is the wavenumber and R is the radius of 
the sphere. The validity of the Boltzmann-Ehrenfest method has been investigated by means of the Boundary 
Element Method (BEM) and confirmed with experiments.  

1 Introduction 

When a single-mode acoustic levitator is driven at a 
frequency slightly above the resonance of its empty cavity, 
oscillational instabilities can affect the levitated object. A 
cause of such instabilities is the change of the resonance 
frequency of the cavity due to the object [1].  
An investigation on the resonance frequency shift of a 
cylindrical cavity induced by a rigid sphere in its interior is 
presented in this paper. The position of the sphere can be 
any point along the axis of the cavity. Several studies 
considering the same problem are available in the literature. 
An analytical equation to describe the resonance frequency 
shift for a plane-wave mode in a chamber containing a rigid 
sphere was obtained by Leung and co-workers [2]. The 
calculation of the frequency shift was based on a Green’s 
function, considering the scattering of the acoustic wave on 
the sphere surface, but neglecting the interactions of the 
scattered wave on the cavity walls. The equation describes 
the resonance frequency shift to second order in klR, where 
kl is the wave number corresponding to the resonance of the 
empty cavity and R is the radius of the sphere. A higher 
order approximation was, however, not possible.  
Numerical calculations of the resonance frequency shift in 
finite cylindrical ducts produced by blockages of different 
shapes have been presented by El-Raheb and Wagner [3]. 
Their calculations are valid for both small and large 
samples with respect to the dimensions of the duct. The 
study of the resonance frequency shift in a cylindrical 
cavity produced by a solid sphere was experimentally 
extended by Barmatz et al. [4].  
An analytical expression for the resonance frequency shift 
of a plane-wave mode was obtained by studying the local 
perturbation of the acoustic field around a solid sphere by 
Curzon and Plant [5]. The expression was valid for very 
small spheres compared with the wavelength. If the terms 
depending on klR in the equation given by Leung et al. are 
neglected, it becomes the same as the expression deduced 
by Curzon and Plant. The equation was also obtained by 
Rudnick and Barmatz [1], who used a Green’s function 
decomposed into two parts, one corresponding to the 
contribution of an empty cavity mode whose resonance 
frequency is close to a shifted resonance of the cavity with 
the sphere, and the other representing the contribution of 
the remaining empty cavity modes.  
Following a similar procedure as Leung and co-workers, 
Mehl and Hill obtained theoretically the eigenfrequencies 
of an arbitrary cavity shape with an internal sphere [6]. In 
addition, an analytical expression for the resonance 

frequency shift of any mode in a rectangular cavity 
containing a small and rigid sphere was deduced by 
Roumeliotis [7]. For an axial mode, the expression reduces 
to the same result given by Curzon and Plant.  
Recently the resonance frequency shift produced by a solid 
sphere in an open cavity of a single-axis acoustic levitator 
has been studied by Xie and Wei [8]. Based on the 
Boundary Element Method, they gave numerical results, 
which coincide quite well with Leung’s equation for small 
samples considering an equivalent volume for the cavity.  
The resonance frequency shift of a plane-wave mode in a 
rectangular cavity induced by a spherical solid, with a 
diameter comparable to the length of the square cross 
section of the cavity, has been investigated by Cordero and 
Mujica [9]. Their numerical calculations are in good 
agreement with experimental results for small spheres 
compared with the wavelength.  
In this paper it is shown that the Boltzmann-Ehrenfest 
principle can be applied to predict the resonance frequency 
shift of a cylindrical cavity brought about by a solid sphere. 
The acoustic field in the empty cavity corresponds to a 
plane-wave mode. An analytical expression is obtained to 
describe the resonance shift. It is proved by means of 
numerical calculations based on the Boundary Element 
Method (BEM) that this expression gives a better approach 
than Leung’s equation. The BEM is also used to 
demonstrate the validity of the Boltzmann-Ehrenfest 
principle. The results are confirmed by experiments.  

2 Theory 

2.1 The Boltzmann-Ehrenfest principle 

According to the Boltzmann-Ehrenfest principle, the ratio 
between the total energy of the sound field in a resonator 
(including an object) and the particular resonant frequency 
of the system is invariant providing the system is friction 
free and behaves linearly [10,11].  
Consider a closed cavity with a stationary sound wave in its 
interior. The frequency of the acoustic field corresponds to 
one of the resonances of the cavity. Since the system is 
assumed to be lossless, the excitation had to cease after the 
sound field was established. 
Let Eo be the total acoustic energy of the stationary wave in 
the interior of the empty cavity at the resonance angular 
frequency ωo. Now, let a sphere be expanded sufficiently 
slowly with its center kept fixed in the interior of the cavity. 
In this process, the volume of the sphere is changed from 
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zero to its final value, Vs. The work done on the system, W, 
during the total expansion is given by:  

∫=
sV

n dVfW
0 

 ,                                  (1) 

where fn is the time-averaged acoustic normal force per unit 
area on the surface of the sphere. Thus, the final total 
acoustic energy in the cavity will be Es = Eo + W. Here the 
purpose is to find the new resonance angular frequency, ωs, 
as a function of the size and position of a rigid sphere along 
the axis of a cylindrical cavity. According to the 
Boltzmann-Ehrenfest principle, 

ooos EW //)( =− ωωω  .                            (2) 

2.2 Acoustic force on a rigid sphere 

 Consider a solid sphere in the interior of a cylindrical 
cavity with radius Rc and length L. Inside the cavity, with 
its walls assumed rigid, there is a stationary plane wave in 
resonance with a wavenumber kl. Here it is assumed that 
klR << 1, where R is the radius of the sphere; therefore, an 
acoustic resonance in the sphere is not possible. In addition, 
since the acoustic impedance of the sphere material is much 
larger than the impedance of the gas, the sphere can be 
considered rigid.     
 Assume a cylindrical 
coordinate system as 
illustrated in Fig. 1; the 
position of the center of 
the sphere is Z. It is 
considered that the 
sound pressure 
amplitude inside the 
cavity, p, is the sum of 
the sound pressure 
amplitude in a plane-
wave mode of the empty 
cavity, pl = Acos(kl z), 
plus the sound pressure 
amplitude of the 
scattered acoustic wave, 
ps. By using spherical 
coordinates with the 
origin at the center of 
the sphere, pl can be expressed as 
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Now, with the identity [12]  
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where jn(klr) is the spherical Bessel function and Pn(cosθ) is 
the Legendre Polynomial, Eq. (3) yields 
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It is assumed that the sphere is small enough and that it is 
sufficiently far from the cavity walls that the scattered wave 
is due only to the presence of the sphere. In this way, let the 
complex amplitude of the scattered acoustic wave be 
described by [2,13] 
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where )1(
nh (kl r) is the spherical Hankel function of the first 

kind; Cn is a constant determined from the condition that 
the component of the particle velocity normal to the surface 
of the sphere must be zero (rigid sphere), which gives 
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As a result, the total sound pressure amplitude at a point on 
the sphere surface is given by  
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In the limit of small klR, Eq. (9) can be approximated at the 
order of (klR)2; in this way, the first three terms of the 
summation are conserved. In addition, by substituting the 
spherical Bessel and Hankel functions in terms of sine and 
cosine functions, and by expressing these trigonometric 
relations as series of klR, after lengthy but straightforward 
calculations, Eq. (9) reduces to   
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An inviscid fluid and an immovable sphere have been 
considered; moreover, taking into account that the system is 
independent of the azimuthal angle, it follows that the fluid 
on the surface of the solid will oscillate only in the θ 
direction. Thus, the component in that direction of the 
complex particle velocity amplitude is determined by 
means of the linear Euler’s Equation as 

                        uθ = (iωρ r)-1(∂p/∂θ) .                            (11)        
The time-averaged acoustic normal force per unit area on 
the sphere is given by [13]  

〉〈−〉〈= • uu 
2
1

 2
1 2

2
ρ

ρ
p

c
f n  ,              (12) 

where 〈⋅〉 indicates the time average; p and u are, 
respectively, the sound pressure and the particle velocity 
evaluated on the surface of the sphere.  
The total normal acoustic force exerted on the surface of 
the sphere, Fn, can be now evaluated as 

∫=
S

nn daRfF  ),( θ  ,                               (13) 

where S is the total surface of the sphere.  

Fig. 1. Cylindrical cavity with 
the sphere in its axis and the 

reference system used. 
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Use of Eqs. (10) and (11) in Eq. (12) to substitute the 
resulting expression for fn in Eq. (13) gives 
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2.3 Resonance frequency shift 

Substitution of Eq. (14) into Eq. (1) produces 
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The total acoustic energy for a plane-wave mode in the 
cylindrical cavity without the sphere is Eo = Vc A2/(4ρ c2), 
where p(z,t) = Acos(kl z)exp(-iω t) has been used and Vc is 
the volume of the cavity. Note that kl = lπ /L, where l is a 
natural number. Finally, the use of this result and Eq. (15) 
allow the calculation of the resonance frequency shift for 
the cylindrical cavity produced by a small solid sphere in its 
interior according to Eq. (2): 
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where ωl is the angular frequency of the plane-wave mode l 
in the empty cylindrical cavity. 

3 Experiment 

The measurements of the resonance frequency shift were 
carried out using the experimental setup illustrated in Fig. 
2. The cylindrical cavity was formed using an acrylic tube 
with an inner radius of 2.54 cm, a length L = 10.57 cm, and 
a wall 0.6 cm thick. The acoustic wave was produced by 
means of a driver from a horn loudspeaker, which was 
coupled to the cylindrical cavity by means of a wave guide 
made of PVC. The opening of the wave guide into the 
cavity had an inner diameter of 0.3 cm and was centered on 
the axis of the cylinder. The top of the cavity was also made 
of PVC, and it had a thickness of 1.0 cm. Several spherical 
samples, made of glass, were used. They were suspended 
along the axis of the cylinder by means of a thin optic fiber 
0.25 mm in diameter attached to them.  
The sound pressure amplitude was measured on the top of 
the cavity by using a probe microphone (B&K 4182), 
which was located 1.25 cm from the axis of the cylinder. 

The resonance frequency of the cavity was determined from 
the curve of the frequency response obtained with a lock in 
amplifier (SR 8500). In this case, a sinusoidal sweep signal 
generated by the lock in amplifier was used as the signal to 
excite the driver.  

Fig. 2. Diagram of the experimental setup 
used. The indicated dimensions are in mm. 

 The main source of error in the experiment was the 
variation of the temperature. For that reason, the 
temperature was registered with a thermocouple, type E, 
connected to a thermocouple monitor (SR 360).  
To reduce the heat delivered by the driver, the amplitude of 
the voltage to excite that transducer was required to have a 
relatively low value. The floor noise in the empty cavity 
was first measured, which was less than 25 dB in all cases. 
The voltage was adjusted to produce about 95 dB at 
resonance at the top of the empty cavity. For this value, the 
heat delivered by the voice-coil of the driver increased the 
temperature inside the cavity sufficiently slow, and the 
effect of the floor noise was negligible. 
Measurements were made of the resonance frequency as a 
function of the position of a given sphere along the axis of 
the cavity. In each set of measurements, the initial position 
was close to the opening of the wave guide into the cavity; 
the position of the sphere was changed until it was close to 
the top of the cavity, and the measurements were repeated 
from the top to the initial position. In this way two 
measurements were made at each position, and the mean 
value is reported. The resonance frequency of the empty 
cavity was measured at the beginning and at the end of each 
set of measurements of the resonance frequency shift. The 
mean value of these two measurements was considered as 
the resonance frequency of the empty cavity. 

4 Numerical simulations 

The resonance frequencies for the various configurations 
were calculated by using the Boundary Element Method 
(BEM). A formulation for axisymmetrical bodies was used, 
where only the generator of the structure is meshed into 
one-dimensional elements [14], as shown in Fig. 3. 

As a rule of thumb, it is required that a BEM mesh contains 
at least six elements per wavelength. In the simulations for 
this paper, 24 quadratic elements were used along the 
generator of the cylindrical cavity, distributed with 20 
elements on the side and 7 on each lid. The spherical object 
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was modeled using 10 elements in all cases. As a check, 
some resonance frequency calculations were repeated with 
rougher meshes, yielding negligible differences. The results 
were further verified using the analytical solution for the 
eigenfrequencies of an empty cylindrical cavity. The 
numerically calculated eigenfrequency never fell more than 
1 Hz apart from the theoretical value. 

The BEM does not readily 
provide direct computation of the 
eigenfrequencies; it shows the 
eigenfrequencies as maxima, as a 
function of the frequency, of the 
condition numbers of its 
coefficient matrices. In the 
present calculation, an iterative 
process has been employed to 
find these maxima, with 
successive BEM calculations at 
varying frequency. If this 
iteration process is properly 
adjusted, the BEM gives 
eigenfrequency values as accurate 
as the Finite Element Method 
(FEM) can. There were two 
reasons for using BEM instead of 
FEM in this investigation: i) the 

geometrical modifications for moving or scaling the small 
sphere are simple to do automatically with the discretized 
BEM model, whereas a FEM model would require the 
geometry to be re-meshed for each configuration, and ii) 
the BEM code was already developed for research purposes 
by a group that includes one of the authors.  
In this paper, the eigenfrequencies of the cavity-sphere 
setup are calculated as a function of the sphere position, and 
the sphere radius. In the first case, calculations were made 
in steps of 0.005/L. In the second case, the sphere radius 
was increased in steps of 0.02 cm. It took about three 
minutes per eigenfrequency in a modern desktop computer. 

5 Results and analysis 

An example of the resonance frequency shift as a function 
of the position of the sphere is shown in Fig. 4, where the 
studied mode corresponded to l = 3, and the experimental 
resonance frequency of the empty cavity was 4838.1 Hz. A 
sphere with a diameter of 2.15 cm was used, which gave a 
value of k3R = 0.96. A very good agreement between the 
experimental data and the results of the numerical 
simulations can be observed. The contribution of the terms 
with the factor (klR)4 in Eq. (16) is relatively small; 
therefore, the corresponding curve is an approximation to 
second order in klR. This curve compares very well with the 
experimental data around the maxima of the relative 
resonance frequency shift. However, the difference between 
this curve and the measurements increases in the 
neighborhood of the minima. It can also be observed that 
Eq. (16) gives a better approximation to the experimental 
results than Leung’s equation.  
The theoretical process for the frequency displacement 
based on the Boltzmann-Ehrenfest principle was 
reproduced using the Boundary Element Method. The 
process is as follows: 1) The sound pressure is solved for a 
cavity with an object. The excitation should produce a 

standing wave of amplitude A, which should be the same 
assumed for the analytical estimation of the total energy in 
the empty cavity. The cavity walls and the object are 
defined as rigid and the BEM is used to obtain the sound 
pressure on them. This calculation is repeated for different 
radii in steps of 0.2 mm. 2) For each radius, the sound 
pressure is obtained on discrete points equally spaced along 
the generator of the sphere. Euler's equation is applied 
using a discrete gradient to obtain the particle velocity. 3) 
The time-averaged pressure exerted by the sound field on 
the sphere surface is obtained by applying Eq. (12) with the 
calculated values of sound pressure and particle velocity. 4) 
The total normal force exerted on the sphere is calculated 
using a discrete integral. 5) The work W for a specific 
radius is obtained by integrating numerically the force as in 
(15). Finally, 6) The frequency displacement for every 
radius is then calculated using eq. (2). 
This procedure provides an alternative derivation of the 
frequency displacement, also based on the B-E principle, 
but through a numerical calculation. The result is closer to 
real conditions than Eq. (16) because the approximation klR 
<< 1 is not considered and the interaction between the 
object and the cavity walls is taken into account. This 
calculation serves as a further verification of the 
Boltzmann-Ehrenfest principle. 

The effect of the size of the sphere on the resonance 
frequency shift was also analyzed. The result for the mode l 
= 3 with a sphere centered in the cylindrical cavity can be 
seen in Fig. 5. The numerical calculation based on the 
Boltzmann-Ehrenfest principle agrees very well with the 
numerical simulations obtained by means of the BEM; 
therefore, it confirms the validity of the Boltzmann-
Ehrenfest principle. Eq. (16), which gives the same result as 
Leung’s equation when the sphere is located in a pressure 
node of a pure plane-wave mode, gives a very good result 
for values of k3R <0.7.  
Graphs for the center of the sphere located at the position 
corresponding to a pressure antinode of a plane-wave of the 
empty cavity are shown in Fig. 6. Here positive resonance 
frequency shifts are produced. The results for the mode l = 
3 and Z = L/3 are plotted as a function of the size of the 
sphere. It can be observed that in this case Eq. (16) gives a 
better approximation than Leung’s equation. In addition, 
the numerical calculation based on the Boltzmann-
Ehrenfest principle gives a very precise result. 

 
Fig. 3. Example of 
the axisymmetrical 
BEM mesh used in 

the calculations. 
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Fig. 4. Resonance frequency shift for the third mode of a 
cylindrical cavity as a function of the position of a sphere 

along the axis: Experiment (+), numerical simulations 
(⎯), results based on the Boltzmann-Ehrenfest principle 

(·-·), and predictions with Leung’s equation (⋅⋅⋅⋅).  
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6 Conclusion 

The Boltzmann-Ehrenfest principle allowed the deduction 
of an analytical expression to predict the resonance 
frequency shift of a plane-wave mode in a cylindrical cavity 
caused by a solid sphere located at any position along the 
axis of the cavity. This method is more direct and simpler 
than a previously reported one based on a Green’s function. 
In contrast with the latter, it was possible predict the 
resonance frequency shift to the fourth order in klR. 
Furthermore, the obtained expression was shown to be 
more general than the one previously published; the 
equation based on the Boltzmann-Ehrenfest principle 
agreed better with experimental and numerical results for 
large spheres. By means of a numerical implementation, the 
validity of this principle was also confirmed.   
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Fig. 5. Dependence of the resonance frequency shift on 
the radius of the sphere for the third plane-wave mode. 
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