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Current dynamic techniques for measuring fluid shear viscosities using quartz, or other piezoelectrics, rely on the 
resonator surface being exposed to a measurand bath whose extent greatly exceeds the penetration depth of the 
evanescent shear mode excited by the active element. This configuration allows the effect of the loading 
parameters to be expressed concisely. Perturbation of the electrical equivalent circuit parameters of the resonator 
by the fluid loading permits calculation of the mass density – shear viscosity product. In this paper, we explore 
the interesting, albeit more complicated situation where the separation between the resonator and a confining 
wall is less than the penetration depth of the fluid occupying the intervening region. It turns out that the resonator 
perturbation in this case is a sensitive function of the separation. This important fact permits extreme 
miniaturization, since for gases between 200°K and 400°K, pressures between 0.01 to 100 atm, and frequencies 
between 10 MHz and 1 GHz, the penetration depth varies from micrometers to nanometers. Variations in the 
spacing is effected by using a second, nonresonant piezoelectric as the wall. Micro-electro-mechanical (MEMS) 
versions of viscometers and associated types of fluid sensors are thereby enabled. 
 

1 Introduction 

Quimby originated the technique of measuring solids by 
attaching them to a quartz crystal [1]. The Quimby 
composite resonator (QCR) reduces to that of the quartz 
crystal microbalance (QCM) [2,3,4] in the limit where the 
measurand becomes a thin film, and its elasticity is 
neglected [5,6,7]. Mason first adapted the technique for 
measuring liquids [8,9,10]. This method remains very 
popular, e.g., [11,12,13,14,15,16,17]. References [7,13] 
contain many more pertinent citations. Stockbridge used the 
modality to measure gases [18,19]. In these applications, 
the crystal resonator is measured without, and then with, the 
loading of the measurand. Ensuing changes are registered 
as changes in frequency, phase, and/or impedance level, 
from which the unknown measurand properties are inferred.  

2 Equivalent Electric Circuit 

Over the years, many equivalent circuits have been used to 
model the piezoresonator, and to describe its behavior when 
its surface is subjected to various conditions of loading 
[20,21,22,23,24]. The most popular is the Butterworth–Van 
Dyke (BVD) network, consisting of a capacitance C0, 
shunted by an R1, L1, and C1 series arm [20]. The series arm 
is the manifestation of the piezoelectrically induced 
vibratory motion at a single isolated resonance. The BVD 
lumped circuit evolved into more elaborate broad-band, 
multi-mode, transmission-line networks that place the 
mechanical boundary loadings and piezoelectric excitation 
mechanism in series at the surfaces [22,23]. 

3 Fluid Loading 

We consider one surface of the piezoelectric resonator to be 
in contact with a fluid to be measured. Lord Rayleigh, 
commenting on Stokes’ treatment of fluid viscosity, wrote 
[25, §347]: “The velocity of the fluid in contact with the 
plane is usually assumed to be the same as that of the plane 
itself on the apparently sufficient ground that the contrary 
would imply an infinitely greater smoothness of the fluid 
with respect to the solid than with respect to itself.” This 
assumption is implicit in the following treatment.  
 
An unbounded Newtonian fluid, (i.e., a fluid with shear 
viscosity, η, in addition to the usual attributes of mass  

 
density, ρ, and elastic stiffnesses, cS and cL), in intimate 
contact with a resonator surface of area A, presents to the 
surface both shear (S) and longitudinal (L) impedances. 
These depend on angular frequency, ω. Mechanical shear 
impedance is ZS = A√(jωηρ) = RS + jωLS. RS represents 
shear dissipation, and LS models entrained mass loading. 
Penetration depth is δ = λ/2π = √(2η/ρω). Longitudinal 
impedance consists of RL = AρvL= A√(ρcL), representing 
energy radiating into the fluid, plus a small reactance 
representing wave attenuation; we neglect longitudinal 
viscosity. These impedances, transformed by a piezoelectric 
factor, appear in the BVD circuit in series with the R1, L1, 
C1 branch [15,16]. Thus, immittance and/or frequency 
measurements on a resonator immersed in an unbounded 
fluid (i.e., when distance (ℓ) from the resonator surface to a 
confining surface greatly exceeds the penetration depth, δ), 
yield only the (ρcL) and (ηρ) products. 

4 Confined Fluid Loading 

For the great majority of fluids and ambient conditions and 
frequencies of interest, the penetration depth, δ, 
characterizing the evanescent shear wave, ranges from 
micrometers to nanometers. We consider the effect of 
introducing a planar rigid boundary parallel to the surface 
of the piezoelectric resonator in order to confine the fluid 
therebetween. Fine adjustments to the spacing between the 
surfaces are easily accommodated by the use of a second 
piezoelectric element, or, e.g., an “inchworm” mechanism 
[26]. When the distance, ℓ, separating the two surfaces 
becomes comparable to δ, the formulas above no longer 
hold. Instead, the surface of the resonator sees a complex 
mechanical admittance of  
 
A⋅YS = A⋅(GS + jBS) =  
 

√(j/2)⋅(δ/η)⋅tan[√(2/j) ⋅(ℓ/δ)].             (1) 
 
The complex mechanical impedance is 
 
ZS = RS + jXS = 1/YS.            (2) 
 
With the abbreviations w = (ℓ/δ) and p = (δ/η), shear 
conductance, GS(w) and reactance XS(w) are: 
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GS = g(w)⋅(p/A) = g(w)/[A⋅√(ωρη/2)], and             (3) 
 
XS = x(w)⋅(A/p) = x(w)⋅A⋅√(ωρη/2), where            (4) 
 
g(w) and x(w) are dimensionless factors with the general 
form of a tanh function with superposed cyclic modulation. 
Figures 1 and 2 show g(w) and x(w), respectively. The first 
three extrema of g(w) are 0.68111 at w = 0.9375, 0.49093 
at w = 2.347 and 0.050039 at w = 3.929; g(0) = 0, and g(∞) 
= 1/2. The first extremum of x(w) is 1.0178 at w = 2.366; 
x(0) = 0, and x(∞) = 1. At w = 0, the slopes are: dg(0)/dw = 
+1, and dx(0)/dw = +2/3. Similarly defined factors, b(w), 
|y(w)|, r(w), |z(w)| behave as follows for w << 1: r(w) and 
|z(w)| are hyperbolic; |y(w)| is linear, and b(w) is zero, with 
zero slope. 
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5 Viscosity and Mass Density 

When w << 1, g(w) ≈ [dg(w)/dw]⋅w ≈ w = (ℓ/δ), and 
viscosity η may be determined directly from the relation 
 
A⋅η = (ΔGS/Δℓ)-1            (5) 
 
Similarly,  

A⋅ρ = (3/ω)⋅((ΔXS/Δℓ).          (6) 
 
Equations (5) and (6) express mechanical values. In order 
to convert them to electrical form, GS is multiplied, and XS 
is divided, by the factor n2 = (Ae/t)2, where e is an effective 
piezoelectric stress coefficient, and t the thickness of the 
resonator.   
 
Thus, for w in the range where g(w) and x(w) are linear, 
automatic network analyzer measurements yield direct 
determinations of viscosity and mass density. As a check, 
the region w >> 1 provides the (ρη) product. Similar 
remarks pertain to use of longitudinal resonators to yield 
values of the compressional stiffness (cL) directly. Because 
δ is usually very small, MEMS miniaturization is a natural 
consequence of using the w << 1 regime.  

6 Some Numerical Values 

Rayleigh [25, p.313] remarks: “Both by theory and 
experiment the remarkable conclusion has been established 
that within wide limits the force [viscosity] is independent 
of the density of the gas.” Tables 1 and 2 contain values of 
pertinent acoustic properties of argon at 200° K, (η = 2.125 
10-5 Pa-s), and hydrogen at 400° K, (η = 1.0867 10-5 Pa-s) 
[27,28]. In these tables and those below, the δ values are for 
a frequency of 1 MHz.  
 

Pressure ρ RS δ
atm kg/m3 kg/(s⋅m2) μm 
0.01 0.02434 1.115 14.58 
0.1 0.24347 3.526 4.609 
1 2.4411 11.163 1.456 

10 25.087 35.787 0.4541 
100 351.94 134.04 0.1212 

Table 1 - Acoustic parameters of argon 
 

Pressure ρ RS δ
atm kg/m3 kg/(s⋅m2) μm 
0.01 0.00061419 0.145 75.05 
0.1 0.0061419 0.458 23.73 
1 0.061392 1.448 7.506 

10 0.61131 4.568 2.379 
100 5.8578 14.142 0.7684 

Table 2 - Acoustic parameters of hydrogen 
 
Tables 3 and 4 provide acoustic values for additional fluids. 
When dealing with miniaturized devices having fluid gaps 
in the order of micrometers to nanometers, one must take 
into account the deviations from Newtonian behavior due to 
finite atomic and molecular dimensions of the fluids. In 
addition, for gases at pressures below about ½ atm, 
viscoelastic behavior [18] is observed, and one must deal 
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with a complex viscosity having a relaxation frequency 
(Maxwell fluid); see also [13].  

H2O/glycerol  
(C3H8O3) 

ρ  
kg/m3 

vL  
m/s 

η 
Pa · s 

δ 
μm 

volume %          
25% water 1205 1738 0.046 3.486 
20% water 1217 1765 0.076 4.458 
15% water 1228 1798 0.13 5.805 
10% water 1239 1828 0.25 8.014 
05% water 1250 1870 0.58 12.15 
00% water 1260 1909 1.5 19.47 

Table 3 - Acoustic parameters of H2O/glycerol mixtures 

 
Substance T  

°C 
ρ  

kg/m3  
η  

mPa-s 
δ  
μm 

water 0 999.8 1.79 0.755 
water 20 998.2 1.00 0.565 
water 100 958.4 0.28 0.305 
vapor 100 0.6 0.013 2.626 

whole blood 37 1060 3.5 1.023 
ethyl alcohol 20 789.20 1.15 0.680 

helium 0 0.1786 18.6 5.758 
mercury 15 13,550 1.55 0.191 
SAE 10 20 875 65 4.863 
SAE 20 20 885 125 6.705 
SAE 30 20 890 200 8.458 
SAE 40 20 900 319 10.622 

glycerine 25 1258.02 1420 18.955 
Table 4 - Acoustic parameters of various fluids 

 

7 Conclusion 

We have considered Newtonian fluids subjected to shear 
motion, in the limit where the distance to a confining rigid 
wall is comparable to the penetration depth. It is found that 
the immittance seen at the face of the shear transducer, (and 
reflected in the transducer equivalent electrical circuit 
values), permits direct determination separately of the 
viscosity and mass density. The smallness of the 
penetration depth, in most applications, is such that extreme 
miniaturization is thereby enabled.   
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