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For real-time acoustic source localization applications, one of the primary challenges is the considerable growth 
in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor 
networks. The complexity of the calculations needed to achieve accurate source localization increases 
dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that 
cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital 
optical-core devices. The objective of this work was to explore the implementation of key building block 
algorithms used in underwater source localization on an optical-core digital processing platform recently 
introduced by Lenslet Inc. We investigate key concepts of threat-detection algorithms such as Time Difference 
Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation 
on the optical-core processor. We illustrate our results with the aid of numerical simulation and actual optical 
hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical 
accuracy achieved via the deployment of optical processing technology, should be of substantial interest to the 
acoustic signal processing community.  

1 Introduction

Acoustic source localization by means of distributed sensor 
networks requires very accurate time delay estimation. The 
use of passive sensor arrays for estimating the position of a 
generic acoustic source represents an old and well-
investigated area. Time delay estimation techniques have 
been applied extensively to this area. Many of these 
techniques are specific to the geometrical configuration 
adopted for array placement thus imposing heavy 
restrictions on the choice of sensor configuration [1-2].  
Recently however, a great deal of effort has been devoted to 
the extraction of spatio-temporal information from a matrix 
of spatially distributed sensors [3]. Notwithstanding the 
considerable progress reported over the years, today's 
leading paradigms for acoustic source localization still face 
substantial degradation in the presence of realistic ambient 
noise and clutter [4]. Figure 1 illustrates a typical 
distributed sensor network employed for submerged threat 
detection. The sensor matrix is comprised of randomly 
placed GPS-capable sonobuoys. The buoys are passive 
omnidirectional sensors that provide sound pressure 
measurements of the ambient conditions and of the signal 
emitted/reflected from the target. A self-localizing 
sonobuoy field provides a unique mode of underwater 
target detection in terms of its deployment flexibility, signal 
acquisition speed, focused ranging, and capability for net-
centric information fusion. However, demanding 
calculations need to be performed to achieve source 
localization, and the computational complexity is known to 
increase dramatically with the size of the sensor array. 
Without the simplifying assumption of regularly placed 
sensors, a substantial processing power requirement is 
necessary that cannot readily be met with standard, off-the-
shelf computing hardware. The Center for Engineering 
Science Advanced Research (CESAR) at the Oak Ridge 
National Laboratory is involved in the development and 
demonstration of exciting unconventional technologies for 
Distributed Sensor Signal (DSS) processing. The CESAR 
efforts in the area of DSS processing are driven by the 
emergence of powerful new processors such as the IBM 
CELL [5], and the EnLight processing platform recently 
introduced by Lenslet Inc. The latter, a tera-scale digital 
optical-core device, is optimized for array operations, 
which it performs in fixed-point arithmetic at 8-bit 
precision (per clock cycle). Its peak performance is at least 
two orders of magnitude faster than the fastest Digital 
Signal Processor (DSP) available today. This research  

presents a methodology for locating underwater threat 
sources from uncertain sensor data. A novel paradigm for 
implementing the Time Difference Of Arrival (TDOA)  
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Figure 1: A distributed sensor network. 

calculation on an EnLight device is also discussed. The 
specific goals of this proof-of-concept effort were to 
demonstrate the ability to achieve required accuracy in the 
computations and to quantify the speed-up achieved per 
EnLight processor as compared to a leading-edge 
conventional processor (Intel-Xeon or DSP). The algorithm 
is designed for a single sound source localization using a 
distributed array of acoustic sensors. Conventional TDOA 
estimation procedures are used. The major focus of this 
paper is the time-domain implementation of TDOA 
estimation. The frequency domain counterpart of the 
analysis, complete with matched filter bank simulation for 
active sonar platforms detecting both target range and 
velocity via Doppler-sensitive waveform synthesis and 
generation, is presented in previous publications by the 
authors [6-7].  

2 Technical Background 

2.1 Source localization in a moving sensor 
field

Locating/tracking an acoustic target involves the estimation 
of mutual time delays between the direct-path wavefront 
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arrivals at the sensors. Several acoustic source localization 
methodologies based on TDOA estimation in distributed 
sensor-nets are available [8-10]. In Ref. 9, an estimate for 
the source location is found given the TDOAs and the 
distributed sensor positions using Maximum Likelihood 
(ML) procedures. The conventional methodologies for the 
emitter location problem usually include iterative least 
squares and/or ML estimates. However, closed-form non-
iterative solutions can be derived that are usually less 
computationally burdensome than iterative least squares or 
ML methods [11]. It is interesting to observe that all 
methodologies mentioned above require, as a necessary 
first step, accurate estimates of TDOAs for each 
combination of sensor/target to be obtained. Thus, for this 
proof-of-concept demonstration, our effort has focused on 
TDOA computations.  

A signal s(t) emanating from a remote source is attenuated 
and  corrupted by noise as it travels through the propagation 
medium. Signal s(t) is received as  x(t) and y(t) at two 
spatially distributed sensors. The received signals can be 
mathematically modeled as 

1

2

( ) ( ) ( )

( ) ( ) ( ).

x t s t n t

y t s t n t
          (1)              

Here the signal s(t) and noises n1(t) and n2(t) are assumed to 

be uncorrelated and  is the attenuation constant. In 
distributed sensor networks, it is of interest to estimate the 

delay,  The arrival angle of signal s(t) relative to the 

sensor axis may be determined from the time delay   [12]. 

One common method of determining the time delay  is to 
compute the cross-correlation function  

, ( ) ( ) ( ) .x yR E x t y t         (2) 

Here E denotes expectation.  The argument  that 
maximizes (2) provides an estimate of time delay. Because 

of finite observation time however, Rx,y(  can only be 
estimated. For example, an estimate of the correlation for 
ergodic processes is given by [13] 

,

1ˆ ( ) ( ) ( ) .x yR x t y t
T

dt

df

f

        (3) 

It is also possible to extract the time domain function  Rx,y

from its frequency domain  counterpart, the cross power 
spectral density  Gx,y(f). The cross-correlation between x(t)
and y(t) is related  to the cross power spectral density Gx,y(f)
by the following well-known equation  

2

, ,
ˆˆ ( ) ( )exp j f

x y x yR G f       (4) 

The quantity G  is an estimate of G,
ˆ ( )x y x,y(f). This is of 

interest because    can be computed very fast by the 

optical-core processor introduced in the sequel. For the 
purpose of  this research, a time domain analysis, 
calculating the correlation function R

,
ˆ ( )x yG f

x,y directly from the 
sliding sum of the discrete-time sampled data sequences xk

and yk, was implemented.  

2.2 EnLight optical core processor 

Research efforts at Oak Ridge National Laboratory include 
the feasibility demonstration of high precision 
computations for grand challenge scientific problems using 
the novel, Lenslet-developed, EnLightTM256 processing 

platform. EnLightTM256 is a small factor signal-processing 
chip (5.5 cm2) with an optical core. The optical core 
performs the Matrix-Vector Multiplications (MVM), where 
the nominal matrix size is 256 256. The system clock is 
125 MHz. At each clock cycle, 128K multiply-and-add 
Operations Per Second (OPS) are carried out, which yields 
a peak performance of 16 trillion operations per second (or 
TeraOPS). The architecture of such a device provides a 
strong rationale for using it in matrix-based applications. 
Due to the inherent parallelism of the architecture, the 
computational speed increases with the scale of the 
problem. The scaling penalty of the optical chip is 
relatively small compared to standard DSP electronics. The 
TDOA algorithm discussed in this paper was  implemented 

on both the existing EnLightTM64  prototype hardware, and 

the scaled-up EnLightTM256 simulator. The  EnLightTM64
prototype board is a proof-of-concept demonstration 
hardware for the optical processor technology with a 
reduced size optical core. The EnLightTM256 hardware is in 
the development process while the EnLightTM256 simulator 
provides the opportunity to examine DSS implementation 

on this faster platform. EnLightTM64  has an operating 
clock of 60 MHz. The optical core has 64 input channels,  
comprised from 256 vertical cavity surface emitting lasers 
that are configured in groups of 4 per channel. The size of 
the active matrix is 64 64, which is embedded in a larger  

Figure 2. The EnLight optical-core processor. 

Multiple Quantum Well (MQW) spatial light modulator of 
size 264  288. Sixty-four light detectors, integrated with an 
array of analog-to-digital converters, comprise the 64 
output channels. The optical core performs the MVM 
function at the rate of 60 106 642 2 = 492 Giga operations 
per second. Each of the 64 data components in the input 
and output channels has an 8-bit accuracy, which results in 
a data stream of 60 106 64 8 bits/s = 30.7 Giga bits per 

second. Figure 2 shows the EnLightTM64  prototype board. 

3 Numerical Simulation 

In mobile target detection schemes, such as active sonar 
systems, the accurate estimation of TDOA by filtering 
through severely noisy data is crucial for tracking and target 
parameter (such as velocity) estimation.. To benchmark the 
EnLight performance, two computer codes were written, 
one using the EnLightTM256 simulator, and the other in 
MATLAB. The MATLAB code readily interfaces with the 
software of EnLightTM256 simulator, which is used to 
design the actual algorithm that either runs on the existing 
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EnLightTM64  hardware platform, or is used to project the 
scaled performance for the EnLightTM256. In that 
framework, a number of operational simplifications are 
made. In particular, the following is assumed: only a single 
target is present during the TDOA estimation process, the 
same speed of sound is experienced at each sensor location, 
each sonobuoy position is known exactly (via GPS) as it 
drifts, and the measurement errors for TDOAs are zero-
mean Gaussian and independent for each sonobuoy. For the 
TDOA calculation, a set of synthetic data was generated. 
The sensor-net comprises 10 sonobuoys. It is assumed that 
only 7 sensors are able to detect the signal emanating from 
the target. It is assumed that the target emits a periodic 
pulsed signal with unit nominal amplitude. Pulse duration is 
1 SI (Sample Interval) and inter-pulse period is 25 SIs. The 
size of one sampling interval is 0.08s. Noise and 
interference  are taken as a Gaussian process with a varying 
power level (typically upto unity). Each sensor stores 
sequences of measured signal samples. Sequence lengths 
can range from 1K to 80K samples. This contributes to the 
rationale for using correlation techniques in the source 
localization process. For the time domain analysis, the 
cross-correlation Rxy, for two discrete-time sequences xk and
yk  (each of length M) of sensor data is calculated as 

1

0

( ) ( )
k M

xy k k
k

R n corr x y x yk n k

M

    (5)

where . The correlation function was 

calculated for x
0,1,............. 1n

k and yk sequences, both with length M = 
1024 and heavily corrupted by zero-mean Gaussian noise of 
SNR = -28 dB. A 128 shift cross-correlation was calculated 
in MATLAB. These calculations were also implemented on 
the actual optical hardware and compared with the 
MATLAB simulation. Some loss of accuracy is evident due 
to conversion to 8 bit fixed-point representation in 

EnLightTM64 . However, the same values of the TDOAs, 
as identified by the cross-correlation peaks, were obtained 
as the MATLAB simulations, even in the presence of 
significant noise signal. The hardware implementation 
scheme, experimental results, and simulation results from 
MATLAB are presented in figures 3, 5A and 5B. 

3.1 Hardware Implementation 

The EnLight processor is ideal for implementing large 
time-series correlation calculations in terms of matrix-
vector multiplication operations. The processor works as a 
matrix-vector multiplier in which a complete MVM 
operation is performed for each machine cycle (8 ns). 
Moreover, a new vector can be presented for multiplication 
every machine cycle. For cases where a new vector is 
multiplied by the same matrix, there is no Input/Output (IO) 
communication latency in the processing time. Since a  30 

s IO time is currently needed to reload an entire matrix 
memory, there is a strong incentive to avoid algorithm 
constructs where this would have to be done often, and 
would thereby create an imbalance between IO and core 
computation. However, changing the entire matrix every 
multiply operation would be an extremely inefficient and 
relatively unlikely event. Therefore, the matrix is pre-
buffered or loaded  onto the spatial light modulator (“local 
memory”) in order to achieve the required processing 
speed. The algorithms employed take this into account. The 
particular scheme for correlation calculation on the EnLight 
platform depends on the length of the two time series and 

the maximum correlation shift to be calculated. The loading 
scheme for the matrix memory and the vector register needs 
to be modified according to the specifics of the data sets to 
be manipulated. A detailed description of the hardware 
loading scheme for a correlation calculation of M = 1024 is 
presented in Fig. 3. As shown in Fig. 3, the initial step in 
the calculation is to build a 256 4 matrix M1 from time 
series xk where the sequence length M = 1024. Next a 
256 1024 matrix M2 is built from time series yk where each 
row is shifted to the left by one element with respect to the 
previous row. The end elements are padded with zeros. This 
scheme is followed for the first 128 rows, as a correlation 
for maximum shift of 128 is performed for this example. 
Rows 129-256 are padded with zeros. Next, M2 is

Figure 3: The data loading scheme for EnLightTM256. 

partitioned into four matrices each with dimension 256 256
as shown in Fig. 3. After the matrices M1 and M2 are 
constructed, they are loaded into the optical hardware. First 
the sub-matrix M2

1 is loaded into the EnLight matrix 
memory. Then the first row of matrix M1 is loaded into the 
vector register. Matrix-vector multiplication is performed as 
M2

1 M1(row1). Steps 5-6  are repeated three more times and  
the products are added at the end to produce the 128 shift 
correlation. For the example in hand, the data sequence 
length is 1024, EnLight matrix size is 256 256, and the 
vector register size is 256 1. Four machine cycles are 
needed to implement the calculations (1024/256 = 4). Each 
matrix-vector multiplication in the optical core takes 8 ns. 
With one processing node, a total of  8 4 = 32 ns is 
required to complete the entire 128 shift correlation 
function. If multiple processing nodes are used then this 
time is further reduced. As is evidenced by the previous 
example, one has to be somewhat aware of hardware 
architecture while programming in the EnLight device. The 
optimization of the loading schemes for the matrix memory 
and vector registers, as dictated by the details of the 
algorithm, is also another area of intellectually stimulating 
research. The signal processing flow diagram of Fig. 4
outlines the hierarchical structure of software interfaces 
with the EnLight processing board, where the higher-level 
programming languages such as FORTRAN, C, or 
MATLAB (current implementation) generate Hardware 
Development Language (HDL) files and bit-streams via the 
use of Xilinx Sysgen blocks of the MATLAB/Simulink 
module to program the FPGAs that access the optical core. 
As shown in figures 5A and 5B, excellent results were 
obtained using simple data-scaling procedures, without 
need to invoke (at this point) available [14], more 
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sophisticated  techniques for high  accuracy computation 
with low precision devices. 

Figure 4: The software interface flow diagram. 

4 Results and Discussion 

The correlation functions Rmn were calculated for each 
sensor pair in the time domain and implemented on the 
hardware in order to demonstrate the loading scheme 
discussed in the previous section (also illustrated in Fig.3). 
As the EnLightTM256 device does not exist yet, the actual 
hardware calculations were performed on the 

EnLightTM64  prototype board. The extension of the 

loading scheme to the  board is straight-forward but more 
machine cycles (4 times as many) are needed to perform the 
same calculations. Figures 5A and 5B compare the 

MATLAB simulations with the EnLightTM64  hardware 
runs. As can be seen, the numerical accuracy (with respect 
to the correct locations of the cross-correlation peaks) of the  

Figure 5A: Comparison of hardware run with MATLAB 
simulation for R12, R13, and R14.

hardware runs compares very favorably with the high 
precision MATLAB simulations. The green plots represent 
hardware runs and the blue plots represent MATLAB 
simulations.  The x-axes are expanded for each plot for 
better visualization of the correlation peaks. Some loss of 
accuracy in the magnitudes of the correlation functions is 
evident due to the conversion to an 8-bit precision scheme. 
However the locations of the correlation peaks coincide 
with the MATLAB results for  R12, R13, R14, R15, R16, and 
R17. The simulation and hardware data sets were further 

compared by calculating the percent difference in the 
magnitudes of the cross-correlation function as 

( /MATLAB EnLight MATLABR R R ) 100 The  values were 

calculated for the cross-correlation peaks that identify the 

estimated time delay . Table 1 lists the various  values. 

As can be seen, the values range from 17% (R12) to 2% 
(R17). For some applications these deviations in numerical 
values may be considered too high. However, for the 
benchmark source localization problem discussed in this 
paper, the absolute magnitudes of the cross-correlation 
functions are not important for the accuracy of TDOA 
estimation. It is the locations of the cross-correlation 
maxima and the relative ratios of the magnitudes of the 
maxima that are crucial for the determination of the 

quantity . The limited precision EnLight optical-core 
processor correctly identifies the TDOA values as does the 
high precision MATLAB simulation. In order to take 
advantage of the processing speed of the optical-core 
processor for DSS applications, one has to be aware of the 
device architecture and its limitations. The algorithm also 
needs to be adapted to circumvent the device limitations. 
As has been demonstrated, for properly structured 
algorithms, the 8 bit  native accuracy of the optical chip is  
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Figure 5B: Comparison of hardware run with MATLAB 
simulation for R15, R16, and R17.

not an impediment to accurate underwater source 
localization. On the other hand, the high processing speed 
of the EnLight platform offers advantages for DSS 
applications that are unparalleled by conventional 
processors.  In addition, it is possible to extend the accuracy 
of the EnLight calculations by employing advanced parallel 
data processing techniques as discussed in Ref. 14. 
Research is also underway to improve the native accuracy 
of optical-core platforms via improved hardware design. In 
terms of processing speed, benchmark calculations were 
carried out for Fourier transforms of long signal sequences. 

In particular, the execution speed of the EnLightTM64  was 
compared to that of a computing platform using dual Intel 
Xeon processors running at 2 GHz and having 1 GB RAM. 
The benchmark involved the computation of 32 sets of 80K 
complex samples transforms. For each sample, both the 
forward and the inverse Fourier transforms were calculated. 
The measured times were 9,626 ms on the dual Xeon 
system, versus 1.42 ms on the EnLight. This corresponds to 
a speedup of over 13,000 on a per processor base. More 
details on these computations can be found in Refs. 6-7. 
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R12 R13 R14

k=1 k=3 k=5
MATLAB 79.1978 95.5889 80.3471 

EnLight64 65.0842 103.5966 85.9405 

17.82% 8.38% 6.96% 

R15 R16 R17

k=6 k=7 k=8

MATLAB 100.9231 123.0550 181.2274 

EnLight64 91.9592 137.1272 185.1162 

8.88% 11.44% 2.15% 

Table 1: Comparison of MATLAB simulation and 
EnLight64 hardware run. 

5 Conclusion

Distributed sensors with optical computing platforms as 
onboard devices present an attractive alternative to 
conventional dedicated sensor arrays. Future advances in 
DSS signal processing for improved target detection, 
tracking, and classification in highly noise-corrupted 
environments can be realized through the development of 
distributed systems that combine superior sensors and 
highly efficient computational nodes consisting of  optical-
core devices such as the EnLight platform. The numerical 
simulations and hardware implementation presented in this 
paper build the first stage in creating a test-bed for 
evaluating the performance of digital, optical-core 
processors in facilitating DSS signal processing. 
Preliminary estimates for the TDOA computation, the core 
of many source localization algorithms, implemented on an 
EnLight prototype processor indicate a speed-up factor of 
the order of 13,000 compared to a dual processor Xeon 
system. Combined with its low power requirements 
(approximately 50W per processor), the projected tera-scale 
throughput of optical-core processor technology can 
alleviate critical signal processing bottlenecks of relevance 
to many distributed sensor-net programs. This, in turn, 
should enable the efficient implementation of new classes 
of algorithms not considered heretofore because of their 
inherent computational complexity such as asynchronous, 
multi-sensor, multi-target tracking under uncertainty of 
noise characteristics.  
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