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Abstract. The present investigation concern the effect of three masses attached periodically to a pipe of small 
diameter. The pipe is small enough that it can be treated as a beam. The masses are eccentric to the center of the 
beam, to achieve a large change in the moment of inertia by the added elements. A shaker is used to excite the 
pipe, which is suspended elastically. Two dimensions of pipe have been investigated: a flat 3 x 30 x 100 mm 
aluminum beam with blocks of 1100 g, and a circular ø32 x ø28 x 4000mm steel beam with blocks of 4000 g. 

The insertion loss formed by the differences in level with and without masses appears to be an appropriate way 
to describe the phenomena for comparison between theory and experiment. Experimentally the insertion loss is 
expressed by the difference between the acceleration levels. Theoretically the energy levels are compared. 

The theoretical model is formulated as a system of boundary equations, which describe propagation of flexural, 
axial and torsion waves within each segment of a tube between periodic elements, and continuity conditions at 
the points, where masses are attached. The presence of masses couples propagation of waves of all these types. 
An exact solution of this system is obtained and it is found that appropriate locations of three identical equally 
spaced masses can dramatically decrease the power input into the system in some frequency ‘stop bands’ 
regardless the excitation conditions.  
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1 INTRODUCTION 
In industrial applications, such as pump and compressor 

systems, pipe vibrations can exceed an acceptable level. 
This is influenced by the vibration source strength of the 
compressor or pump, and to a high degree also on the 
dynamic characteristics of the piping system. Especially 
for systems, where varying speed of rotation is applied, 
eigenfrequencies in piping system are likely to be excited 
in certain speed ranges. It is desirable to use passive and 
simple design elements to suppress this propagation of 
energy to parts of the piping system where high vibration 
levels are harmful or annoying. 

Solutions to such problems require that measurements and 
analyses are made in situ, and that solutions can be 
provided preferably without dismantling the piping 
system. Periodically spaced masses added to the piping are 
an appropriate solution, and investigations to develop valid 
prediction models, and measurement techniques has been 
initiated in the Danish Makunet network. 

2 THEORETICAL MODEL 
The energy transmission in straight elastic beams bearing 

concentrated masses can conveniently be described within 
the framework of boundary integral equations method. In 
the general case of spatial vibrations, these equations 
should be formulated for the longitudinal waves, for 
torsion waves and for flexural waves. These waves 
propagate independently upon each other in a 
homogeneous beam, but they interact in a compound beam 
of spatial configuration or in a beam bearing inclusions.  
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Here ( )ξ,xU , ( )ξ,xΦ , ( )ξ,xV  and ( )ξ,xW  are 
Green’s functions, which describe the shape of forced 
vibrations of an infinitely long beam excited at a given 
frequency by a unit concentrated axial force, torque or 
transverse force, respectively. These equations are written 
for each segment of compound structure at the edges, 

εξ += 0  and εξ −= l , 0→ε . They are solved 
with continuity conditions at the interfaces between 
segments of a beam and appropriate boundary conditions.  

 

The methodology of boundary equations is equally 
applicable for analysis of standing waves in structures of a 
finite length and for analysis of the energy transmission in 
unbounded structures. In the latter case, the total power 
flow contains four components, 

WVU NNNNN +++=Σ ϕ . 

They present energies transported by axial, torsion and 
flexural waves:  
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The presence of equally spaced inertial inclusions 
generates the band gap effect in an infinite structure 
bearing an infinitely large number of these inclusions (a  

periodic structure) for all power flow components. The 
practical issue explored in this paper is an assessment of a 
possibility to reduce the energy transmission by means of 
three inertial inclusions.      

 

 

 

 

 

 

 

 

 

 

 

 

  

Theoretical predictions of eigenfrequencies have been 
made and compared to experimentally obtained values. 
The results are seen in section 3.3 
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3 STRUCTURE INVESTIGATED 

3.1 Structure 
The layout of the structures, which are analyzed 

theoretically and experimentally, is presented in Figure 1 
and 2. 

 
Figure 1. Analyzed structure: 1000 x 30 x 3 mm 

Aluminum beam  

 

Figure 1 shows the flat Aluminum beam of length x width 
x thickness: 1000 x 30 x 3 mm. It is suspended in springs 
to two points, one in each end of the beam. The excitation 
of the waves is provided by an electrodynamic shaker 
supplied with white noise. To achieve damping of the 
propagating waves, a sandwich damped beam of the 
dimensions 1000 * 30* 7 mm is attached at the end of the 
test beam.  Three masses are located with equal distance of 
50 mm as shown in Figure 1. The masses are eccentric to 
the neutral axis to achieve a large change in moment of 
inertia. 

 

The purpose of using the flat beam was to provide 
movements in one (vertical) plane to simplify the modes of 
vibration and thus also the analysis and calculations. 

 

The second structure that was tested is shown in figure 2. 

 
Figure 2. Pipe structure tested including periodic elements 

 

The second structure consists of a steel pipe: 4000 x do 
33.6 x di 27 mm. Damping is provided by a sandwich 
structure of 1000 mm length, using u shaped aluminium 
profiles and viscoelastic damping material. Distance 
between periodic elements: 400 mm. 

 

The effect of the periodic elements is assumed to be 
related to half a wavelength of the beam. The first iteration 
of the frequencies to expect a consequence of the periodic 
elements is shown in figure 3. 

 

 
Figure 3. Wavelength of bending waves in the tested 
beams. 

It is seen that the two beams are tested at different bending 
wave conditions, with frequencies of the half wavelength 
between periodic elements of 364 Hz and 679 Hz 
respectively. 

3.2 Effect of damping 
The effect of damping has been considered important for 
the efficiency of the periodic elements in relation to 
propagating waves. Application of the sandwich damping 
structure as seen in figure 2 is seen in figure 4. The 
damping effect is seen to start above 100 Hz, and become 
very efficient above 500 Hz. This implies that waves of 
frequencies higher that 500 Hz is expected not to be 
reflected. Note the factor of 10 reduction in amplitude. 
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Figure 4. Frequency response of pipe with no periodic 
elements  without damping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Frequency response of pipe with no periodic 
elements with damping. 

 

3.3 Eigenfrequencies verification with theory  
Calculations are done for the model specified in the 
previous section of the paper. As discussed, it is sufficient 
to consider only flexural motion in a vertical plane. As a 
validity check, eigenfrequencies of a freely suspended 
beam composed of four segments in the absence of 
attached masses were calculated by use of the 
methodology of boundary equations. The obtained results 
were identical to those given by an elementary formula for 
eigenfrequencies of a uniform free-free beam.  

 

The boundary element method has been applied to the 
eigenfrequencies of the flat beam, with the result seen in 
figure 5. The predicted eigenfrequencies compare well to 
the predicted ones. 

 
Figure 5. Experimentally and theoretically obtained 
eigenfrequencies of flat beam. 

3.4 Results  
A method of practical use in industrial noise control is the 
use of the insertion loss. It is in this case applied as the 
quotient between the acceleration level with and without 

periodic elements. The acceleration is measured in two 
positions in three directions, and the average is formed 
between all three directions in the two positions. Because 
of the dominant excitation in the vertical plane, see figure 
2, the major acceleration levels are seen in the vertical 
plane. See the acceleration in the vertical direction with 
and without 3 blocks in figure 8. 

 
Figure 8. Acceleration in dB re 1e-6 m/s2. B: no blocks, r: 
3 blocks 

The insertion loss for the circular pipe is seen in figure 9. 
Note that 0 dB in the vertical scale means no reduction. 
Positive response means reduction. 

 
The insertion loss shows a significant reduction in a broad 
range of frequencies from 100 to 660 Hz. This is a very 
satisfactory result, because of the implication of this 
method of reduction of vibrations in pipe systems. 

The insertion loss of a pipe with 1, 2 and 3 blocks is seen 
in figure 10. A significant effect is seen with 2 and 3 
blocks. Note that the peaks in the frequency region below 
500 Hz do not express eigenfrequencies, but are rather 
differences in the acceleration spectra when the insertion 
loss is determined. A shift in the eigenfrequencies when 
the masses are applied result in large differences in the 
insertion loss at frequencies different from the 
eigenfrequencies. 
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Figure 9. Insertion loss for circular pipe with three periodic 
elements 

 
Figure 10. Experimental insertion loss, b: 3 bloks, r: 2 
blocks, g: 1 block 

The mass of the periodic masses is of importance for the 
insertion loss, see figure 11. A threshold appears to be 
present for the effect to be significant. This will be 
investigated further. 

 
Figure 11. Experimental insertion loss with three masses 
vs. mass, b: heavy, g: medium, r: light 

 

Comparison of the insertion loss calculated and 
determined experimentally is seen for a pipe with three 
masses in figure 12. I general the prediction shows the 

significant trends in the frequency regions 400 to 640 Hz 
and 900 – 1600 Hz. 

 
Figure 11. Comparison insertion loss. b: experiment, r: 
theory 

 

4 CONCLUSIONS 
The method of reduction of pipe vibrations by means of 3 
periodic elements with a high eccentricity has been applied 
to two types of beams: a flat and a circular beam. The 
method is proven experimentally to be efficient, and the 
formation of stop bands is recognized. 

The presently developed boundary equation method has 
proven efficient to predict the eigenfrequencies. Further 
development of an engineering tool for prediction of 
periodic elements in vibration reduction in pipes is 
encouraged by these results. 

 

The significant effects are shown when comparing theory 
with experiments. Next steps are to improve the theoretical 
of the experimental boundary conditions and then a 
parametric study of the effects of size of masses, stiffness 
of the beams for the excentric masses, and eventual an 
industrial application.  
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