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Speckle noise constitutes the main drawback of ultrasound images. Despite the use of contrast agents that 
enhance the visualization of vascular zones, the backscattered signals from the contrast agent and tissue are still 
close which prevents a wide use of contrast agent for diagnosis. Thus, it was necessary to implement image-
processing techniques that enhance the contrast echo and have the capability of classification. We have applied a 
new approach based on the autoregressive model where an image of prediction errors is calculated in the first 
phase. Then, a Gaussian filter is applied to the prediction error distribution before classification by a Gaussian 
mixture model. The Agent to Tissue Ratio (ATR) factor and Fisher criterion are adopted to compare the 
performance of this method with harmonic and B mode images. These experiments show the advantages of our 
proposed approach. 

1 Introduction

Echography is cheap, simple and safe, operates with low 
cost, and does not need heavy equipments. Its importance 
has increased recently with the introduction of ultrasound 
contrast agents and the implementation of newer image-
processing techniques. Moreover, the ultrasound scanner 
visualizes organs and blood vessels and is commonly used 
by medical professionals as a diagnostic tool. We are 
mainly interested in cardiac contrast-agent applications and 
specifically the discrimination between the perfused zone 
and the surrounding tissue. This discrimination yields 
critical information about blood perfusion of the heart and 
blood flow rate, information that actually assesses heart 
function. Contrast agents injected intravenously increase 
the performance of ultrasound images. Their small diameter 
of 1-10 µm prevents their total destruction by pulmonary 
capillaries and allows them to reach cardiac cavities. 
Because they are formed by air or gas bubbles, they are 
frequently protected by encapsulated surfactant shell to 
resist the high pressure in the cardiac cavities [1]. In 
addition, the density and the compressibility of these 
microbubble agents are different from those of the blood 
and surrounding tissues causing an enhancement of the 
backscattered signals. Moreover, because of their nonlinear 
behavior, contrast agents generate harmonics, 
subharmonics, and ultraharmonics of the incident 
ultrasound waves. This leads to several ultrasound-imaging 
modes [2-5] based upon the nonlinear component of the 
signal [8]. We have previously applied the autoregressive 
(AR) model [6,9] on the backscattered signal to separate the 
tissue part and the agent part, and we have also applied the 
Gaussian mixture model (GMM) combined to the AR 
model to achieve a good classification. This consisted of 
introducing two Gaussian-functions mixture to model 
autoregressive-prediction errors associated to tissue and 
contrast agent, so that a contrast enhancement between 
these two partitions can be accomplished. In this paper, we 
propose to implement a new variant approach that improves 
the contrast images classification by means of the GMM-
AR technique. The approach consists of applying a 
Gaussian filter as an intermediary step before applying the 
GMM classifier and after establishing the image of 
prediction errors using AR-covariance method [6]. Our 
results have shown that the prediction error is relatively 
large for the signal issued from contrast agents when 
compared to that from the tissues. As noted in [11] this 
filtering step makes the prediction error distribution closer 
to a Gaussian distribution. The GMM then models the 
modified distributions into two partitions according to the 
filtered prediction-error image pixel values. This new 

variant approach shows a better performance than that of 
the existing techniques and the harmonic mode [4] that is 
being implemented in most ultrasound scanners. 

2 Multiframe classification using 
modified GMM-AR technique

The acquired RF frames are of a three-dimensional data 
volume (2D + time) composed of F frames as shown in 
Figure 1. Every frame is a 2-dimensional B mode image 
made of L RF signals. The RF signal represents the 
backscattered echoes involving the depth information. It is 
assumed that the points of coordinate (i,j) from each frame 
belong effectively to the same scatterer and that the 
displacement effect due to motion is negligible. We define 
an acquisition vector Xij consisting of N (N<=F) points (i,j) 
that are located into the consecutive frames as shown in 
Figure 1. 

Figure 1: left: Data volume 2D + time consisting of F 
frames where each frame is a B mode image formed by L 
lines and P points. Right: zoom of an Xij vector constituted 
by N consecutive pixels deriving from the same position 
(i,j).

The AR-based method is applied to each vector, so that the 
linear/nonlinear behavior of the scatterer is expressed. For a 
tissue scatterer, the prediction error is assumed to be low, 
while for the agent, it is relatively high. The AR-based 
covariance method is selected in this approach to calculate 
the prediction error, since it has been shown to be the best 
method among the other AR-based techniques [6]. 

2.1 Autoregressive covariance method 

The autoregressive model (AR) uses the assumption of a 
linear system in order to predict the sample x(n) value 
based on its previous p samples. The corresponding 
prediction error is given by: 
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where a(i) are the prediction coefficients calculated using 

the Levinson-Durbin algorithm [10], )(ˆ nx  is the estimated 

sample value, and p is the model order. 

The covariance method, which is an AR-based approach 
[6], gathers the adjacent acquisition vectors into rectangular 
blocks. For a given block, the covariance matrix is 
calculated in order to determine its associated global AR 
parameters. Then, the prediction error for the block pixels is 
locally estimated (1) using these global coefficients, and the 
prediction-error image is obtained by processing all the 
image's blocks. Because the tissues' backscattered signal 
has a linear diffusion characteristic, the covariance method 
may simulate it and yields a low prediction error. Whereas 
for the contrast agent, its backscattered non-linear signal is 
not well modeled by the linear AR model, and the 
prediction error is relatively greater. 

The approach that we have proposed in our previous work 
[9] consisted of combining the AR-covariance method and 
the GMM model. The modeling of the prediction error 
associated with agent and tissues regions by two Gaussians 
produced satisfying results. However, we can improve this 
technique, if we ensure that these distributions are close to 
Gaussian before applying the GMM model. 

2.2 Gaussian filter 

The GMM models both the contrast and tissue distribution 
by a Gaussian function. It assumes Gaussian distributed 
observations. Therefore, we propose to apply a Gaussian 
filter to the prediction error image in order to have a 
distribution closer to a Gaussian [11], in agreement with the 
central limit theorem [12]. This assumption is verified in 
the results section using a Goodness-Of-Fit (GOFT) test 
[13]. 

2.3 Gaussian mixture model 

The Gaussian model aims to model a distribution by a 

Gaussian function characterized by its mean x and its 

variance x
2. The Gaussian probability density function 

[12] denoted by ),(x, 2
x xN is given by equation 2. 
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The Gaussian mixture model combines many density 
functions possessing different parameters and linearly 
weighted by wi (3). 
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The study of the statistics of the AR prediction error of 
contrast ultrasound images illustrates the presence of two 
distribution categories: low values for tissue and relatively 
high values for agent. Indeed, the prediction error 

associated to tissue yields a low mean T and a small 

variance 2
T  since the tissue scatterers’ response is linear 

[10] and relatively homogenous. As for the agent 

distribution, its corresponding mean A is high because the 
agent's scatterers are nonlinear [14-15]. Moreover, in the 
blood, the agent dissolution is non-homogeneous and the 
scatterers’ position is randomly disposed which lead to a 

high variance value 2
A . Therefore, the modeling of these 

two distributions by a GMM model, constituted by two 

Gaussians ),(T, 2
t tN  and ),(A, 2

a aN , yields 

discrimination since the distributions are close to Gaussian 
and the means take clearly different values. 

2.4 Algorithm procedure 

Our approach achieves a classification between the contrast 
agent and tissues. Each iteration is constituted by an AR-
covariance pretreatment method, a Gaussian filter stage, 
then a GMM classifier. An initialization phase is required 
to determine the initial parameters of the Gaussian and to 
find out the primary classes pixels set. First, the covariance 
method is applied and the prediction-error image is 
established. Second, the initial Gaussians functions are set 
to have the same mean as the mean whole distribution. As 
for their covariance, they are equal to the whole distribution 
covariance weighted respectively by 0.9 and 1.1. A 
threshold attributes the pixels to the preliminary tissue and 
agent partitions. 

For now, the pixels set are gathered into two groups. The 
covariance method is globally and separately applied to 
each group, and two families of prediction error coefficients 
are determined. To calculate the prediction error image, we 
combine the probabilities a posteriori P1 and P2 and the 
prediction coefficients a1 and a2 as shown in equation (4). 
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Next, the Gaussian filter is applied to the image followed 
by a GMM that aims to classify the pixels into two classes 
by means of maximum likelihoods. At each iteration, new 
model parameters values are calculated, and the pixels are 
reattributed again towards the contrast and tissue classes. 
Applying Gaussian's filter at each iteration yields the 
adaptation of the GMM with the image complexity and 
feature. In addition, it allows a progressive localization of 
the contrast zone and a gradual determination of the 
separation contour. 

3 Experimental setup 

A tissue phantom consisting of a synthetic material having 
acoustic properties similar to biological tissues 
(backscattered ratio 10-4 [1/cm/sr], attenuation 1.5 dB/cm 
for a scanned frequency 2.25 MHz) has been used. The 
contrast agent used is SonoVueTM [14] which belongs to the 
second generation of agents conceived by Bracco Research 
(Geneva). The microbubbles are hexafluoride sulfide gases 
(SF6) stabilized by a phospholipid shell. The phantom is 
immerged in a tank containing 800 ml of NaCl (0,9%) 
solution. This solution is diluted by adding an initial dose of 
agents using a micropipette. A magnetic stirrer is used to 
keep the solution in the tank in circulation. The ultrasound 
beam of 2.5 MHz fundamental frequency traverses 38 mm 
in the phantom before reaching the agent zone. The 
ultrasonic acquisition system is a MEGAS echography 
connected on one hand to the PA230E probe and on the 
other hand to an acquisition system for processing RF 
signals called platform FEMMINA [15-16]. The acquired 
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data volume is formed by 50 images where each image is 
composed of 80 lines that cover an exploration sector of 75 
degrees. Each RF signal is constituted by 3117 pixels and 
probes a depth of 6 cm. To construct the B mode image, the 
RF signal is demodulated by envelope detection operator 
then is displayed on Cartesian coordinates by axes 
transformation from the polar coordinates. 

The calculation of the AR parameters requires the 
observation of a sequence of N samples (N > p) from the 
signal. This requires the observation of N consecutive 
frames since the dimension of the Xij vectors is equal to the 
number of samples. Unfortunately, the cardiac motion 
constrains the number of frames that can be used. The 
cardiac rate varies from 70 up to 200 beats/min depending 
on the patient. The echographic frames' frequency is in the 
range of 10 to 60 Hz. This limits the number of frames to 
process from 10 to 50 frames. Since the frame rate is 33 Hz, 
we propose to select five consecutive frames to reduce the 
influence of the movement and to have enough frames to 
apply the model. 

4 Results

The second phase of each algorithm's iteration is divided 
into two steps. The first consists of applying the Gaussian 
filter to ensure that the tissues and contrast agent 
distributions are close to Gaussian. In the second step, 
GMM is used to model these distributions. 

To evaluate quantitatively the Gaussian assumption, we 
propose to use a Goodness-Of-Fit measure. GOFT is 
calculated as the root mean squared error (rmse) between 
the best Gaussian function that fits the histograms bins and 
the interpolation function constituted by the bins' center 
[13]. 

In fact, in order to observe clearly the role of the Gaussian 
filter before exposing our results, we choose to apply 
successively to the first prediction-error image a Gaussian 
filter and to study the evolution of the GOFT parameter. 
The associated GOFT values are depicted in Table 1. The 
results show that GOFT values decrease and that the 
distributions correspond to the Gaussian shape after 
Gaussian filter application. 

    

On the other hand, Figure 2 illustrates the corresponding 
distribution obtained for the prediction-error corresponding 
to the first iteration, when one to five Gaussian filtering 
steps are applied. Since we aim to express the Gaussian 
observations, we present at different scales the histograms 
of tissue agent, about 8000 and 25000 respectively. The 
green curve is the shape of the GMM Gaussian functions 
that characterizes the model. This curve proves, in both 
tissue and contrast cases, how their distributions fit 
Gaussian model and how they gradually tend to a Gaussian. 
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Figure 2: distributions of tissue (left) and contrast agent 
(right) for the first obtained prediction-error image a) and 
filtered by a Gaussian filter one b), two c) and three d) 
times. Tissue scale is about 8000 while the agent scale is 
25000. 

Moreover, the Fisher criterion may give an idea about the 
classification feasibility capability when applying the 
Gaussian filters. Table 2 shows that the Fisher criterion 
increases gradually for the first six iterations, and thus the 
classification feasibility raises progressively. 

Iteration 1 2 3 4 5 6 
Fisher 0.97 1.31 1.55 1.72 1.92 2.01 

Table 2: Value of Fisher criterion for the first six iterations. 
It is clear that Fisher increases gradually.

It is obvious that our proposed approach that introduces the 
Gaussian filter yields better results than those in the 
previous approach or the B mode technique. The 
visualization of the prediction-error image is given in 
Figure 3. It may be observed that the Gaussian filtering 
(Figure 3c) yields an improvement as compared to the 
unfiltered prediction error image (Figure 3b) or the B mode 
image (Figure 3a). 

Figure 3: a) B mode image. b) Image prediction error after 
applying the AR-covariance method c) image prediction 
error filtered by a Gaussian filter.

Iteration GOFT 
1 0.0048 
2 0.0045 
3 0.0043 
4 0.0042 

5 0.0041 

Table 1: Values of GOFT 
parameter after applying 
successively a Gaussian filter 
on the first prediction-error 
image 

a b
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The quantitative comparison of the performance of these 
images may be made using two parameters. The Agent to 
Tissue Ratio (ATR) (5) is frequently used [17] in the 
ultrasonic imaging modes to compare the methods 
efficiency. Since the second phase of the algorithm is the 
discrimination between tissue and agent, a statistical 
parameter based on mean and standard deviation as Fisher 
criterion (6) is adopted in order to evaluate the 
classification feasibility. These two parameters are 
calculated inside two identical windows of a dimension of 
50 points x 10 lines which are located at the same depth in 
tissues and contrast agent regions respectively. Theses 
parameters are defined as: 

                            
w
t

w
aATR 10log20                          (5) 

                             
w
t

w
a

w
t

w
a

FISHER                         (6) 

where the superscript index w indicates that the parameters 

 and  are calculated according to the windows values. 

Table 3 provides the values of these parameters for the 
various imaging methods. The proposed method (GMM-
AR model with Gaussian filter) provides an improvement 
with respect to the previous approach (GMM-AR model), 
the B mode and the harmonic images. It yields a better 
ATR value of 19.20 dB, whereas it is 14.58 dB when we do 
not introduce the Gaussian filter. In the standard ultrasonic 
modes as B mode and harmonic mode, the ATR values are 
9.50 and 12.13 dB respectively, which are smaller than the 
ATR associated with the proposed approach. 

Methods ATR factor Fisher criterion
B mode 9.50 0.97 

Harmonic mode 12.13 1.00 
GMM-AR model 14.58 0.94 

GMM-AR model with 
Gaussian filter 

19.20 2.01 

Table 3: Values of ATR factor and Fisher criterion that are 
obtained for our approach and for the other techniques. 

Moreover, the Fisher value (2.01) shows that our approach 
provides a better discrimination, since this criterion 
illustrates the overlapping ratio between the two partitions. 
Figure 4 provides the final classification results and shows 
that our technique yields better results than those in the 
existing and previous methods (Figure 4a). 

Figure 4: Image classification using AR method coupled to 
GMM model a), using our approach b), and after applying 
the erosion dilation as a post treatment technique c).  

Figure 4b shows that the classification method yields a 
good differentiation between the tissues and the vascular 
zones. At the separation edges, the boundary is not clear, 
because there is an overlap between agent and tissue areas. 
To compensate for this drawback, we could apply the 
erosion dilation technique (Figure 4c). 

5 Conclusion and discussions 

We have proposed a new approach for enhancing the 
contrast in ultrasound images with contrast agents. The 
application of AR-covariance method on multi frame 
signals provides a prediction-error that has two categories 
of values, a low prediction error in the case of the tissue and 
a high prediction error in the case of the contrast agent. 
This leads to a good separation and contrast enhancement. 
A Gaussian filter is then applied to improve the modeling 
of the prediction error distribution for both agent and tissue 
regions by the GMM model. We have shown that the 
obtained results are better than those of the harmonic and B 
mode techniques. By using many classes, we think we 
could improve the performance of this method and we may 
quantify the amount of contrast agent in the circulation. A 
Further interest of the proposed approach relies on the fact 
that it needs a limited number of frames (five in the present 
study) which potentially makes it less sensitive to artifact 
linked to the cardiac motion. 
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