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Letting Euclidean norm be the performance parameter, the task of finding the best approximation of a complex 
function in a finite dimension subspace leads to a convex optimization problem that can be easily solved by the 
least-squares method. However, this procedure leads to a sub-optimal solution in applications that have no phase 
requirements on the approximated function. In this case, semidefinite programming has been used to obtain 
optimal magnitude responses.  In this work, this non-convex optimization problem is dealt with by using an 
iterative method based on the least-squares, which is illustrated on directivity synthesis by spherical loudspeaker 
arrays. Usually, instead of synthesize directly the desired pattern, the strategy adopted is to reproduce its 
truncated spherical harmonic representation. The truncation order is determined by the number of drivers of the 
spherical array. It is shown that truncation error and signal powers can be significantly reduced if phase error is 
neglected, providing potential means to improve directivity synthesis for applications requiring only magnitude 
response.

1 Introduction 

Letting Euclidean norm be the performance parameter, the 
task of finding the best approximation of a complex 
function in a finite dimension subspace leads to a convex 
optimization problem that can be easily solved by the least-
squares method. However, this procedure leads to a sub-
optimal solution in applications that have no phase 
requirements on the approximated function. This non-
convex problem arises in array pattern synthesis with 
desired magnitude response (phase not concerned). 
A semidefinite relaxation is used in [1], so that such a non-
convex problem is approximated by a convex one. In the 
present work, a simple iterative method based on the least-
squares is used, which presents good results if the algorithm 
is properly initialized. The method is illustrated on 
directivity synthesis by spherical loudspeaker arrays. 
Spherical harmonic functions constitute a natural basis for 
representation of compact sound source directivities, since 
they emerge from the solution of the Helmholtz equation in 
spherical coordinates. Therefore, the control strategy 
generally adopted is to provide the spherical array with 
some preprogrammed basic directivities corresponding to 
spatial harmonic patterns, cf. [2, 3, 4]. Then, different 
directivities can be achieved simply by changing the gains 
associated with the basic directivities, so that it is not 
necessary to redesign the filters when a different target 
pattern is desired. In order to calculate these gains, the 
spherical harmonic decomposition (SHD) of the target 
pattern must be carried out. It is important that synthesized 
basic directivities present magnitude and phase accuracy. 
However, if the desired pattern is frequency dependent, its 
SHD leads to coefficients that vary with frequency, so that 
additional filtering is necessary. In this case, spherical 
harmonic representation is still useful, as directivity pattern 
can be rotated simply by changing the gains. 
The SHD of the target pattern must be truncated since 
spherical arrays have a limited number of drivers, e.g., an 
icosahedral source with 20 drivers can reproduce spherical 
harmonics up to degree 3 [4]. Generally, high degree 
harmonics are necessary to describe a sound field, 
especially at high frequencies when sound sources tend to 
be more directional. Even though a spherical source with 
120 drivers has already been built (see [5]), to increase the 
number of drivers is not a cost-effective solution. In this 
work, the improvements in the directivity synthesis that can 
be achieved by ignoring the phase of the target pattern are 
discussed. 

2 Formulation and algorithm 

Let b ∈ Cs contain s samples of a target function, A ∈ Cs x L 
be a basis with L elements and x ∈ CL contain coefficients 
that express b in the subspace spanned by A. The following 
convex optimization problem can be formulated to obtain x 
(least-squares): 

(I) 
2

min bAx
x

−  

To solve problem (I), an inner product must be defined. 
The functions considered in the present work are defined on 
a spherical surface. These functions are sampled so that 
θt = tΔθ and ϕm = mΔϕ; where θ is the elevation angle, ϕ is 
the azimuth angle, t = 0, 1, 2 … T-1 and m = 0, 1, 2 … M-
1. Then, s = TM is the number of samples, Δθ = 1800/(T-1) 
and Δϕ = 3600/M. The meshed spherical surface motivates 
the use of the following inner product: 

 Wuvvu, H=  (1) 

where u, v ∈ Cs and ss x
+∈RW . W is diagonal and it 

contains non-dimensional area weight factors that are 
determined by surface integration over appropriate sections 
of the sphere. Thus, the diagonal terms of W, wi, are given 
by  
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where i = mT + t + 1. 
Thus, the solution of problem (I) is given by [6] 
 x* = ( AH W A )-1 AH W b (3) 
Resulting x* treats magnitude error and phase error equally. 
However, if phase error is ignored, problem (I) must be 
replaced by problem (II), which is not convex. 

(II) 
2

min bAx
x

−  

Now, let ss x
+∈RB be a diagonal matrix so that B = diag(|b|) 

and y ∈ Cs contain only phase information, so that 
(diag(y))Hdiag(y) = I. Then, problem (II) can be 
reformulated as [1] 

(III) 
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Problem (III) is not convex in optimization variables x and 
y. However, when y is fixed, it is convex in x and the 
optimal solution is analogous to that one expressed in 
Eq.(3): 
 x* = ( AH W A )-1 AH W B y   (4) 
This suggests a method to solve (III) in which y is 
iteratively updated according to ( )xAiargjeyi = , where 

1j −= , Ai is the i-th row of A and yi is the i-th 
component of y. The algorithm is summarized below. 

 

In [1], a different method is used to solve problem (III), 
which is based on a semidefinite relaxation, i.e., this non-
convex optimization problem is approximated by a convex 
one. The iterative method used in this work does not ensure 
optimality of the solution, but it performs better than the 
standard least-squares and it provides good results if the 
algorithm is properly initialised. Its main advantage over 
the semidefinite approach is that it is a simple and easy-to-
implement method. 

3 Directivity synthesis by spherical 
loudspeaker arrays 

In this work, the spherical harmonic strategy is adopted to 
synthesize the target directivity by a spherical loudspeaker 
array, i.e., the spherical source is provided with 
preprogrammed basic directivities corresponding to spatial 
harmonic functions and the target pattern must be 
decomposed in this basic functions. Thus, the difference 
between the target pattern and the synthesized one is due to 
the target decomposition and to the error involved in the 
synthesis of the basic directivities (spherical harmonics). 

3.1 Synthesis of spherical harmonics 

Let A ∈ Cs x L have the directivities (magnitude and phase) 
of the L drivers of the loudspeaker array as columns, 
x ∈ CL contain driver velocities, ( )2x 1Ns +∈CS contain 
samples of spherical harmonic functions up to degree N as 
columns, ( )21N+∈Cc have complex coefficients and b = Sc. 
Then, the optimum driver velocities are given by eq.(3). 
In this work, A is obtained by using an analytical model for 
the sound radiation of the spherical array that takes into 
account the frequency dependence of the loudspeaker 
directivities. This model consists in a set of drivers 
mounted on a spherical surface. Each driver is modeled as a 

convex spherical cap that vibrates with a constant radial 
velocity along its surface, as described in [4]. 
Let cj be the j-th element of c, δ be the Kronecker delta and 
Si be the i-th column of S. By doing cj = δji, Eq.(3) yields to 
optimum cap velocities (in the least-squares sense) to 
reproduce the spherical harmonic function given in Si. If 
this procedure is repeated from i = 1 up to i = (N+1)2, a 
matrix ( )21NL +∈ xC*X containing optimal solutions for each 
spherical harmonic as columns is obtained. Since X* is 
evaluated, optimal solution for any linear combination of 
spherical harmonics up to degree N is given by X*c. 
It is known that the function spaces spanned by spherical 
harmonics of the same degree are linear subspaces that are 
invariant with respect to rigid rotation through spatial 
angles θ and ϕ [7]. For example, if a given pattern is in the 
subspace generated only by harmonics of degree 3, any 
rotation of this pattern also possesses a spherical harmonic 
expansion consisting only of harmonics of degree 3. Then, 
if bn ∈ Cs contains samples of a function in the subspace 
generated by spherical harmonics of degree n, it can be 
expressed as bn = Sncn, where cn ∈ C2n+1 and Sn ∈ Cs x 2n+1 
is a matrix whose columns contain spherical harmonics of 
degree n and orders from –n to n. 

Now, let 1=n
H
ncc  and Xn

* ∈ CL x 2n+1 have the optimal cap 
velocities associated with the 2n+1 columns of Sn. Then, 
maximum and minimum singular values of W1/2(AXn

* - Sn) 
provide, respectively, upper and lower error bounds 
associated with the subspace spanned by spherical 
harmonics of degree n. The directivity patterns associated 
with such bounds can be determined by examining the 
right-singular vectors obtained in the singular value 
decomposition [3]. 

3.2 Spherical harmonic decomposition 

Let p ∈ Cs represent a given sound pressure field. Problem 
(I) can be solved in order to obtain c that better express p in 
the subspace defined by S according to the Euclidean norm. 
This process is called spherical harmonic decomposition 
(SHD). N is the truncation number of the SHD. Then, 

(IV) 
2

min pSc
c

−  

The optimal solution is given by [6] 
 c* = ( SH W S )-1 SH W p  (5) 
Resulting c* treats magnitude truncation error and phase 
truncation error equally. Normalized magnitude error of the 
SHD can be evaluated by Eq.(6). 

 
2

2

p

pSc −
=

*

SHDE    (6) 

However, since ESHD is not minimized by solving problem 
(IV), it is expected to achieve a smaller magnitude error in 
the SHD if phase error is ignored. This can be dealt with by 
replacing problem (IV) by problem (V), which can be 
solved iteratively as described in session 2. 

(V) 
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H
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1) Initialize y 
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2.1) x = ( AH W A )-1 AH W B y, 

2.2) ( )xAiargjeyi = ; y = [yi] 

3) Optimal solution x* = x, y* = y 
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In problem (V), ss x
+∈RP is a diagonal matrix so that 

P = diag(|p|) and u ∈ Cs contain only phase information, so 
that (diag(u))Hdiag(u) = I. 
Normalized magnitude error due to the truncated SHD can 
be evaluated by Eq.(6). The final magnitude error is given 
by Eq.(7), which is a measure of the distance between the 
target sound field and the synthesized one. 

 
2

2

**

p

pcX −
=E    (7) 

4 Results 

Here, some simulation results are presented in order to 
illustrate the improvements that can be achieved by 
ignoring phase error in the SHD. 
The following values were used in the simulations: L = 20 
(icosahedral source), s = 79x40 = 3160 points, c0 = 343m/s, 
ρ0 = 1.21kg/m3 and r/a = 20; where c0 is the sound speed, ρ0 
is the equilibrium density of the medium, r is the radius of 
the sphere on which the sound pressure is evaluated and a is 
the radius of the spherical array. All drivers of the source 
have the same size, which was chosen to be as large as 
possible, so that overlap does not occur. The directivity of 
each driver of the array was evaluated analytically, 
according to the multipole source model presented in [4]. 
The drivers were supposed to have the same characteristics. 
The directivity of a single spherical cap of the icosahedral 
source was used as target pattern. It was calculated by using 
a spherical harmonic expansion up to degree 9 and the cap 
velocity was made frequency dependent in order to provide 
a constant sound pressure level of 80dB (ref. 20μPa) in the 
main radiation direction. So, the presented results show the 
ability of several drivers in reproducing a single driver. 
There would be no approximation error if driver 
directivities were used as a basis for directivity 
representation. However, since SHD of the target function 
is performed, large errors arise in the final pattern that is 
synthesized by the spherical array, as it will be shown. 

 
Fig.1 Normalized RMSE arisen in reproducing functions in 
the subspace spanned by spherical harmonics of degree n 
by an icosahedral source. 

Figure 1 shows the root mean square errors (RMSE) that 
arise in reproducing functions in spherical harmonic 
subspaces up to degree 3 by an icosahedral source. Theses 

curves were obtained as described in the end of session 3.1. 
Only one curve was plotted for n = 0, 1 and 2 for clarity, 
since computations have shown that upper and lower 
bounds for each one of these subspaces are not 
distinguishable. It can be verified that synthesized basic 
patterns become less accurate as ka and n increase (k is the 
wave number). 
The magnitude errors - calculated by Eq.(6) - due to the 
SHD of the target pattern are shown in Fig.2 for different 
truncation numbers (N). The error decreases as N increases, 
as expected. It is shown that magnitude error can be 
drastically reduced if the phase of the target pattern is 
ignored. A good spherical harmonic representation of the 
target magnitude can be achieved by using N = 1. 
The iterative method was initialized by letting u contain the 
phase of the target pattern (refer to problem (V)).  The 
normalized mean square difference between two 
consecutive u was used as convergence criteria (ε=0.03%). 

 
Fig.2 SHD magnitude errors – different truncation numbers 
and optimization procedures. 

Figure 3 compares the harmonic coefficients obtained by 
solving problem (IV) and problem (V) for N = 3. For each 
spherical harmonic subspace, the curves represent the 
square root of the sum of the squared coefficient amplitudes 
of the harmonics of different orders. By comparing 
continuous and dashed lines, one can verify that high 
degree harmonics are replaced by low degree harmonics as 
ka increases if the phase of the target pattern is ignored. 

 
Fig.3 Spherical harmonic coefficients for N = 3. 

The final magnitude errors - calculated by Eq.(7) – due to 
SHD truncation and to spherical array synthesis are shown 
in Fig.4 for different N. If phase of target pattern is 
considered, comparison of Figs.2 and 4 shows that SHD 
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error is more important than array synthesis error. If phase 
of target pattern is ignored, SHD error prevails at low ka 
values and array synthesis error prevails at high ka values. 
This occurs since high degree harmonics become more 
important as ka increases, and they are difficult to be 
synthesized by a spherical array as shown in Fig.1. For 
ka > 3 approximately, it is better to use N = 1 than N = 3. 

 
Fig.4 Final normalized magnitude errors – SHD with 
different truncation numbers and optimization procedures. 

 

 

 
Fig.5 Magnitude and phase of the target pattern, its SHD 
(problem (IV) with N = 3 and problem (V) with N = 1) and 
the synthesized directivities at ka = 4. 

Figure 5 shows the following directivity patterns evaluated 
for ka = 4: target pattern, patterns obtained after SHD by 
solving problem (IV) with N = 3 and problem (V) with 
N = 1, and decomposed patterns synthesized by the 
spherical loudspeaker array. Figure shapes indicate the 
function magnitudes and figure colors indicate function 
phase in degrees. 
By representing a sound field with low degree harmonics, it 
is possible to reduce the power of the signals that must feed 
the drivers. Figure 6 shows the velocity magnitude that 
must be transmitted to one driver of the icosahedral array in 
order to synthesize its own directivity; the velocities of the 
other drivers are not presented, but their magnitudes are 
smaller. Theses values lead to a sound pressure level of 
80dB in the main radiation direction for all ka and at a 
distance r = 20a from the center of the spherical array. 

 
Fig.6 Velocity magnitude of the most solicited driver for 
different approaches. 

5 Conclusion 

If only magnitude response is required, the task of finding 
the best approximation of a complex function in a finite 
dimension subspace can be carried out by a simple iterative 
optimization method based on the least-squares. Although 
this method does not ensure the optimality of solutions, it 
performs better than the least-squares method if the 
algorithm is properly initialized. In this work, the method 
was illustrated on directivity synthesis by spherical 
loudspeaker arrays. The improvements in the directivity 
synthesis that can be achieved by ignoring the phase of the 
target pattern were discussed. 
It was shown that a target pattern can be described by 
spherical harmonic functions of lower degrees whether 
phase error is ignored, so that the signal powers of the 
drivers and the synthesis error are greatly reduced, 
providing means to improve directivity synthesis for 
applications requiring only magnitude response. 
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