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Bending waves can be employed in the context of acoustical imaging for the detection of material
defects or localization of vibration sources. The obtainable spatial resolution is limited by the minimal
wavelength contained in the excitation signal. The evanescent part of the wave field can usually not be
used for the imaging of sources at distances exceeding a wavelength. Therefore only the propagating
part of the field can be employed, which means that the minimum size of the region where energy can
be focused is in the order of half a wavelength due to the diffraction limit. If the recovery of vibration
sources and reflections is posed as an inverse problem, regularization techniques can be applied in
order to force a sparse solution. Preliminary results indicate that the assumption of a sparse source
distribution can be used to resolve features significantly smaller than half a wavelength. The approach
is therefore applied as a high-resolution imaging technique for bending wave fields.

1 Introduction

Acoustical imaging based on bending waves can be em-
ployed for source characterization and detection of inho-
mogeneities in plate-like structures. In acoustical imag-
ing, measurements of the vibration response at a num-
ber of positions are employed to create a spatial map
indicating the position and strength of these inhomo-
geneities diffracting the incident field.

If the distance between the diffracting points and the
receivers exceeds a wavelength, the evanescent part of
the wave field can usually not be employed for imaging.
Therefore, only the propagating part of the field can
be used; the obtainable spatial resolution is then in the
order of half a wavelength.

In the work presented in this paper, a least-squares in-
version approach is used to obtain an estimated acous-
tical image from measurements taken on a line array.

Sacchi et al. have shown in the context of Fourier [1] and
Radon transforms [2] that imposing the assumption of
sparseness on an inversion scheme can help to increase
the obtained resolution. Their approach is transferred
and adapted to the imaging problem.

The forward model is introduced in section 2, followed
by the inversion approach in section 3. The proposed
method is tested on numerical simulations, which are
presented in section 4.

2 Forward modeling

The coordinate system is chosen such that the plate un-
der investigation extends in the x−y plane. A line array
of receivers is positioned at y = 0. The model domain
M to be imaged is situated at y > 0; it is insonified by
a source at x = 0, y = −y0. This setup is shown in
Fig. (1).

The incident field vinc(t, x, y) can be computed at every
point in M using the Green’s function G(k, r) as given
in [3]:

G(ω, r) = H
(2)
0 (

ω

c
r)−H

(2)
0 (−i

ω

c
r). (1)

H
(2)
0 is the zero-order Hankel function of the second

kind, i is the imaginary unit, ω represents the frequency,
c the phase velocity and r the distance to the source.
The spectrum and position of the source determine the
incident field; they are assumed to be known. The inci-
dent field can therefore be removed from the measure-
ment before the processing is done.
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Figure 1: Setup of the model domain.

Scattering objects inside M are represented by the dis-
tribution m(x, y). The scattered field vsc(t, x, y) is mod-
eled using the Born approximation:

vsc(t, x, y) = [vinc(t, x, y) ·m(x, y)] ∗ G(t, x, y), (2)

where ∗ denotes spatio-temporal convolution.

The data domain D is formed by the measured field
d(t, x) and is obtained by taking a slice at y = 0:

d(t, x) = vsc(t, x, 0). (3)

2.1 Forward operator

The forward model can be described by an operator L
mapping from the model domain M to the data do-
main D:

L : M → D. (4)

For discretized domains, L could be represented by a
matrix. Assuming that M has dimensions Nx×Ny and
D has dimensions Nt × Nx, the size of the matrix re-
quired would be (Nx · Ny) × (Nt · Nx). Such a matrix
would be huge, even for small datasets. It is therefore
advisable to represent L by the operations needed for
the mapping from M to D.

The spatio-temporal convolution in Eq. (2) can be car-
ried out in the wavenumber-frequency domain. In this
domain, the transform variables ω, kx, ky correspond to
the variables t, x, y in the space-time domain, respec-
tively. Zero-padding is required in order to avoid wrap-
around effects in the space-time domain.

The operation of taking a slice at y = 0 as described
in Eq. (3) can also be performed in the wavenumber-
frequency domain and is equivalent to the calculation of
the average value along the ky-axis.
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Summarizing all operations, the forward mapping con-
sists of the following steps:

1. multiplication of the incident field vinc(t, x, y) by
the scattering distribution m(x, y)

2. zero-padding in three dimensions (t, x, y)

3. forward Fourier transform in three dimensions
(t, x, y → ω, kx, ky)

4. multiplication by the Green’s function G(ω, kx, ky)

5. averaging along the ky axis

6. inverse Fourier transform in two dimensions
(ω, kx → t, x)

7. truncation in two dimensions (t, x).

The steps forming the forward operator L are mathe-
matically represented by Eq. (5) at the bottom of this
page. The padding and truncation operations have been
left out to simplify the notation.

3 Inversion approach

The forward operation is given by the application of the
operator to the model domain:

Lm(x, y) = d(t, x). (6)

Given the data, an estimate of the model space can be
obtained by least-squares inversion. Eq. (7) shows the
normal equations for the given problem:

L∗Lm(x, y) = L∗d(t, x). (7)

3.1 Adjoint operator

In order to solve the problem, the adjoint operator L∗
is derived using the inner product [4]:

〈Lm(x, y), d(t, x)〉 = 〈m(x, y),L∗d(t, x)〉. (8)

The adjoint operator L∗ derived using Eq. (8) is given
by Eq. (9) at the bottom of this page.

3.2 Smooth inversion

A standard inversion approach using Tikhonov regular-
ization is shown in Eq. (10):

m̂(x, y) = (L∗L+ λI)−1 L∗d(t, x). (10)

In this equation, I represents a variable having the di-
mension of the model domain (Nx×Ny) filled with ones,

Lm(x, y) =
1
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(9)

and λ is a regularization parameter. The application of
this kind of regularization is equivalent to assuming a
Gaussian distribution of the values of the model domain
m̂(x, y) to be estimated [2], thereby imposing smooth-
ness on the result.

3.3 Sparse inversion

As an alternative approach, the model parameters can
be assumed to obey a Cauchy distribution, thereby fa-
voring sparsely distributed scatterers. If this assump-
tion is justified, the obtainable resolution of the esti-
mated result can be increased.

The regularized estimation employing a sparseness con-
strained is given by Eq. (11), which is derived analo-
gously to [1]:

m̂(x, y) = (L∗L+ λQ(x, y))−1 L∗d(t, x). (11)

The regularization variable Q(x, y) depends on the re-
sult of the estimation:

Q(x, y) =
1

1 + m̂(x,y)m̂∗(x,y)
2σ2

m

. (12)

Therefore, Eq. (11) is nonlinear and has to be solved
iteratively. In each iteration, Q(x, y) is updated from
the estimation result m̂(x, y) of the last iteration.

The variable Q(x, y) can be interpreted as a spatially
dependent regularization operator, smoothing the result
only in regions in which the amplitude of the estimated
model space is low. The parameters λ and σm have to
be chosen depending on the desired sparseness level and
the strength of the noise present in the dataset.

4 Simulations

4.1 Setup

Numerical simulations have been carried out for three
different configurations of diffracting objects in an alu-
minum plate having a thickness of 1 mm. The different
least-squares problems are solved using a conjugate gra-
dient scheme which is applied to the normal equations
[5].

The source inducing the vibrations was positioned at
(x = 0 cm, y = −5 cm). A zero-phase signal was emitted
with a spectrum having a central frequency of 3 kHz and
exhibiting a cosine-squared roll-off towards 0 kHz and 6
kHz. Fig. 2 shows the wavelength in the chosen material
for the frequency range of interest.
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Figure 2: Wavelength in a 1 mm aluminum plate.

4.2 Simulation setup A

A domain of 50 by 50 points with a grid spacing of
1 cm is chosen to be imaged using 50 receivers with a
spacing of 1 cm situated at y = 0. Fig. 3 shows the first
test setup: two diffracting objects are positioned at a
distance of 2 cm, the upper one with a relative strength
of 0.8, the lower one with a relative strength of 1. Note
that the distance of the objects is half a wavelength
with respect to the maximum frequency employed in the
simulation. For the center frequency, it is only about one
third of the wavelength.
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Figure 3: Setup A with two diffracting objects.

The forward simulation d(t, x) = Lm(x, y) is carried
out. White noise is added at a level of -20 dB. The
result is shown in Fig. 4.
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Figure 4: Measured signal d(t, x).

A first estimation of the diffracting structure can be
calculated by application of the adjoint operator to the
measured dataset. Fig. 5 depicts the reconstruction that
can be obtained using m̂(x, y) = L∗d(t, x).
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Figure 5: Estimation obtained by application of the
adjoint operator L∗.

The resolution can be improved by calculation of the
smooth inversion scheme according to Eq. (10) as shown
in Fig. 6.
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Figure 6: Estimation obtained by application of the
smooth inversion operator.

For the sparse inversion according to Eq. (11), an initial
guess for the regularization variable Q(x, y) has to be
provided. It is chosen to obtain this guess from the
result achieved with the adjoint operator presented in
Fig. 5.

Fig. 7 depicts the initialization of Q(x, y). It can be seen
that Q(x, y) is small in regions where there are higher
amplitudes present in the dataset.

The final result of the sparse inversion is shown in Fig. 8.
Using the sparseness assumption, the objects having a
distance smaller than half a wavelength can be sepa-
rated. Furthermore, the relative strength is retrieved
correctly with values of 0.803 for the upper and 0.994
for the lower scatterer.
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Figure 7: Initial guess of Q(x, y).
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Figure 8: Result obtained by sparse inversion

4.3 Simulation setup B

In a second setup, several scatterers of different strength
have been positioned inside the model domain as shown
in Fig. 9. The estimated distribution of scattering ob-
jects obtained by application of the adjoint operator,
the smooth inversion scheme and the sparse inversion
are shown in Figs. 10, 11 and 12, respectively.
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Figure 9: Setup B with several diffracting objects.

The relative performance of the different methods is sim-
ilar to the results obtained from the first setup. The
estimate based on sparse inversion delivers a very satis-
factory and useful approximation.
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Figure 10: Estimation obtained by application of the
adjoint operator L∗.
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Figure 11: Estimation obtained by application of the
smooth inversion operator.
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Figure 12: Result obtained by sparse inversion

4.4 Simulation setup C

The third simulation features a connected, line-shaped
object depicted in Fig. 13. The estimate delivered by
the adjoint operator does not provide clear information
on the shape of the diffracting structure as can be seen
in Fig. 14. Fig. 15 shows the result of the smooth inver-
sion which is good enough to roughly identify orientation
and size of the object. Nevertheless, the sparse estimate
presented in Fig. 16 is clearly superior in terms of reso-
lution, although it must be stated that the weaker parts
of the object can not be found in the reconstruction.
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Figure 13: Setup C showing a connected object.
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Figure 14: Estimation obtained by application of the
adjoint operator L∗.
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Figure 15: Estimation obtained by application of the
smooth inversion operator.

5 Conclusion

In this paper, a discrete operator for modeling the mea-
surements on a line array due to a distribution of diffract-
ing objects has been presented. Furthermore, a corre-
sponding adjoint operator has been derived. These op-
erators have been applied in order to obtain estimates
of the spatial distribution of scattering objects. Results
obtained using three different methods – the adjoint op-
erator, a smooth inversion scheme and a sparse inversion
scheme – have been presented and compared for three
different simulation examples.

The inversion based on a sparseness assumption ob-
tained superior results and provided estimates with high
spatial resolution. In some cases, features smaller than
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Figure 16: Result obtained by sparse inversion

half a wavelength could be resolved. It is however im-
portant to keep in mind that meaningful results can only
be obtained if the assumption of sparseness is justified
for the distribution under investigation.

It is intended to extend the presented work by carrying
out experiments in order to test the applicability of the
method to real measurements.
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