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A simplified calculus model to investigate on the transverse heat transport near the edges of a thermally isolated 
thermoacoustic stack in the low acoustic Mach number regime is presented. The proposed methodology relies on 
the well known results of the classical linear thermoacoustic theory which are implemented into an energy 
balance calculus-scheme through a finite difference technique. Details of the time-averaged temperature and heat 
flux density distributions along a pore cross-section of the stack are given. This information allows estimates of 
the optimal length of thermoacoustic heat exchangers and of the magnitude of the related heat transfer 
coefficients between gas and solid walls. 

 

1 Introduction 

A thermoacoustic engine consists basically of the following 
four components: 
1. − a gas filled plane-wave resonator; 
2. − an electro-acoustic transducer (acoustic driver); 
3. − a porous solid medium (regenerator/stack); 
4. − a couple of heat exchangers facing both ends of the 
stack. 
In its most simple and widely studied arrangement, the 
stack consists of an assembly of thin parallel plates aligned 
in the direction x of the particle acoustic oscillation (axial 
or longitudinal direction) and spaced by a distance 
comparable to the thermal penetration depth, δκ, the 
distance through which heat can diffuse in an acoustic 
cycle. This element, defined as the “heart” of the engine, 
gives place to the desired heat/sound energy conversion, the 
so called “thermoacoustic effect”. The heat exchangers 
(“hot” and “cold” exchangers), placed in close proximity of 
both ends of the stack, absolve to the task of either 
supplying or removing heat from its edges thus enabling 
heat transfer with the external world. 
The coupling between the stack and the heat exchangers is 
actually recognized as a fundamental problem in 
thermoacoustic engines design and a major challenge for 
the future improvement of the overall engine’s 
performances. Optimal design of thermoacoustic heat 
exchangers depends on the understanding of the thermo-
fluid dynamic processes controlling the heat transfer 
between the sound wave and the heat exchangers at the heat 
exchanger−stack junctions. The starting point for the 
solution of this problem is the analysis of the structure of 
the time-averaged temperature, energy and flow fields near 
the pore ends of the stack. 
Although considerable theoretical research has been 
devoted to this problem [1-3] some aspects are still not 
fully understood, even at low and moderate acoustic Mach 
numbers, such as the relative incidence of non-linear 
acoustic effects, turbulence, thermal effects and other local 
physical processes on the disagreement found between 
standard linear theory predictions and experiments [4]. 
To delve into the above phenomena, a simplified numerical 
model to investigate on the time-averaged temperature and 
energy flux distributions near the edges (both in the solid 
and in the gas) of a thermally isolated thermoacoustic stack 
is presented in this paper. The proposed methodology relies 
on the well known results of the classical linear 
thermoacoustic theory, in the “short stack” approximation 
formulation, for the main energy-transport variables. They 
are implemented into a simple energy balance calculus-
scheme through a finite difference technique. The 

numerical results concerning the dependence of the two-
dimensional temperature and energy-flux distributions on 
such parameters as the plate spacing, the plate thickness, 
the amplitude of the resonant wave, etc., are presented. 
Information on the optimal length of thermoacoustic heat 
exchangers and on the magnitude of the related convective 
heat transfer coefficient between working gas and solid 
wall is also derived. 

2 Formulation 

For problems characterized by a periodic time dependence 
(like thermoacoustics), the time-averaged law of 
conservation of energy for a compressible viscous fluid is 
expressed by the equation [5]: 

 0=⋅∇ e&  (1) 

Integrating this equation over a volume element bounded 
by a closed surface S and applying the divergence theorem 
gives us: 

 0=⋅∫ dS
S

ne&  (2) 

where n is the unit vector directed along the normal to the 
surface element dS. Equation (2) can be conveniently 
applied to whatever sub-region traced in the gas to impose 
local energy balance. To accomplish this, a finite difference 
technique may be used, where the quantitative results of 
standard linear theory can be considered for the 
components of the time-averaged energy flux density along 
the directions of interest. 
The thermoacoustic equation for the hydrodynamic energy 
flux density along the x direction is derived in the 
simplified case of a parallel-plate stack. The ratio of the 
plate spacing (and of the plate thickness) to the width in the 
transverse direction is taken to be very small (as in real 
cases) thus the energy flow along the z direction 
(perpendicular to the x-y plane) is negligible and the 
problem can be regarded as two-dimensional. 
The conventional complex notation is adopted for the time-
dependent variables: 

 { }ti
m et ωξξξ 1Re)( +=  (3) 

where t is the time, i the imaginary unit, Re{ } signifies the 
real part and where the mean value ξm is real but the 
amplitude oscillation ξ1 is complex to account for both 
magnitude and phase of the oscillation at frequency ω. 
If the equation of state of the gas is taken to be the ideal gas 
equation, the following expression holds for the time-
averaged hydrodynamic enthalpy flow along the 
longitudinal direction [6]: 
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where ρm is the mean density of the gas, cP is the isobaric 
specific heat of the gas, T is the temperature, u is the x-
component of the acoustic particle velocity, and tilde 
indicates complex conjugation. To evaluate this quantity, 
explicit expressions for the first-order complex amplitudes 
T1 and u1 inside the stack are required. If the specific heat 
of the plate material, cs, is notably greater than cP, the 
following expressions hold for T1 and u1 [6]: 
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P1 being the local amplitude of the dynamic pressure, Pr the 
Prandtl number, y0 half distance between two plates, δν the 
viscous penetration depth and where y=0 is in the center of 
the fluid gap. 

Run y0/δκ l/δκ ξs/λ PA/Pm 

1 3.39 0.088 0.131 0.017 
2 2.1 1.3 0.179 0.02 
3 0.5 - 4 1.271 0.179 0.02 
4 0.25 - 0.75 0.339 0.179 0.025 
5 1 - 1.25 0.53 0.179 0.025 
6 1.5 - 2 0.805 0.179 0.025 
7 2.5 - 3 1.271 0.179 0.025 
8 1 0.551 0.179 0.06 
9 1.5 0.805 0.179 0.06 
10 2 1.059 0.179 0.06 
11 2.5 1.271 0.179 0.06 
12 3 1.568 0.179 0.06 

Table 1. Parameters of selected simulations. Test gas = 
helium, mean temperature = 300 K, mean pressure = 10 
kPa, resonator length = λ/2=5.04 m, resonance frequency = 
100 Hz, plate material thermal conductivity = 10 Wm-1K-1; 
LS/λ = 0.025. 

A simple expression for the pressure derivative dP1/dx can 
be derived if the stack satisfies the “short stack 
approximation”. Under this condition pressure and velocity 
may be approximated at the entrance of the stack in terms 
of the equations given by loseless acoustics that, in the case 
of a half-wavelength resonator, are simply: 

 01 sin PxkPP sA ==  (8) 

 01 cos iuxk
a

Piu s
m

A ==
ρ

 (9) 

PA being the amplitude of the dynamic pressure at a 
pressure antinode, k the wave number (k=2π/λ), a the sound 
velocity and xs the mean stack location calculated as the 
distance of the stack from the centre of the resonator. 
Using equation (9), we can write for the volume flow rate at 
the entrance of the stack 

 011 uAiuAU resres ==  (10) 

Ares being the cross sectional area of the resonator. Equation 
(6) can be integrated over the cross section of a pore to 
obtain U1 within the stack 
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and where As is the cross sectional area of the stack open to 
gas flow. By imposing now continuity of volume flow rate 
at the entrance of the stack, equations (10) and (11) can be 
equated to find dP1/dx just inside and, by approximation, 
along the stack 
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where the blockage ratio Ω=As/Ares=1/(1+l/y0)describes the 
porosity of the stack. 
Substituting now equations (8) and (13) into equations (5) 
and (6) and these last in equation (4), the following 
expression is found, at second order in the acoustic 
oscillation amplitude, for xh& : 
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Note that for a given stack location (xs) in the resonator, all 
quantities in this equation may be assumed independent of 
the axial coordinate x within the stack except Tm; quantities 
enclosed in square brackets, on the other hand, depend only 
on the y coordinate reflecting the transverse variations of 

Fig. 1. Magnified region of two stack plates. The light grey 
areas indicate the computation domain and the control 
volume about a generic nodal point. 
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the acoustic velocity u1 and of the oscillatory temperature 
T1. In the following we rewrite equation (14) in the form 
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are both real and positive quantities. 
The energy flux density along the axial direction comprises 
also the diffusive term −K∂Tm/∂x (K being the thermal 
conductivity of the gas). This contribution is generally 
considered to be negligible in comparison to the 
hydrodynamic-one and will be here neglected. 
On the opposite hand, the transverse component of the 
energy flux density contains, by hypothesis, only the 
diffusive term 

 
y
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where yq& is the time-averaged heat flux density along the 
transverse direction. 
Since a x-dependent derivative ∂Tm/∂x, and thus a x-variable 

xh
.

along the stack, implies net heat deposition into and/or 
extraction out of the solid plates, equations (15) and (18) 
must be related to the analogues in the solid walls. If Ks is 
the thermal conductivity of the plate material, the time-
averaged heat flux densities along the x and y directions are 
simply 
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after taking into account that thermal conduction is the 
unique mechanism of energy transport inside the stack 
plates and that, being by hypothesis cs>>cp, the solid 
temperature oscillations are negligible. 

3 Numerical model 

The simulation model system is a thermally isolated stack 
of parallel plates, of length Ls located at position xs in a 
half-wavelength gas filled resonator sustaining a standing 
acoustic wave. As a stack is usually constituted by a set of 
identical plates, calculations were performed in a single 
channel of the stack, i.e. between a single pair of parallel 
plates. The simulation domain is further reduced by 
symmetry from half a gas duct to half a plate and is 
indicated in Figure 1 by the light grey area together with the 
coordinate system used. The axis parallel to the plates is the 
x axis; x=0 is chosen to be the beginning of the stack on the 
left. The y axis is perpendicular to the stack-plates; y=0 is 
chosen to be the midpoint between the two adjacent plates. 
The calculation of the steady-state two-dimensional time-
averaged temperature distribution was performed using a 
finite difference methodology. To this end, the 

computational domain was subdivided using a rectangular 
grid. In the x direction the computation mesh size, Δx, was 
typically 0.0041Ls while in the y direction the computation 
mesh size, Δy, was typically 0.02y0. The set of finite-
difference equations for the unknown quantities Tm(x, y) 
and Tsm(x, y) was then derived imposing energy balance at 
each nodal point of the computational grid making use of 

Fig. 2. Time-averaged heat flux density in the y direction at 
the plate surface (y=y0) as a function of the position along 
the plate. Solid line is the heat flux density profile 
computed using the present model (run 1). Open triangles 
are numerical data from ref. 1 (run 2). Open circles are 
numerical data from ref. 3 (run 7). 

equations (15) and (18) for the x and y components of the 
energy flux density in the gas and of equations (19) for the 
analogues in the solid. Temperature spatial gradients were 
discretized using first order nodal temperature differences. 
As an example, for a nodal point laying in the gas region of 
the simulation domain (see Figure 1) the resulting equation 
is: 
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which is equation (2) applied to the control volume about 
node (i, j). Analogue equations yield for nodal points laying 
in the plate, while to derive the system-equations for nodal 
points laying on boundary lines, symmetry lines and on the 
gas-plate interface line, the following boundary conditions 
were imposed: 
• nodal lines at y=0 and y=y0+l are symmetry lines so 
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• continuity conditions at the fluid-solid interface (y=y0) 
entail that the time-averaged temperature of the gas 
corresponds to the plate temperature and that the energy 
flux leaving (or entering) the gas equals that entering (or 
leaving) the solid wall 
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• for a thermally isolated stack no heat may leave or enter 
the stack diffusively across the plates terminations (y0≤ y≤ 
y0+l) 
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• for a thermally isolated stack no energy may leave or 
enter the stack hydrodynamically across the pore ends (0≤ 
y< y0) 

 0)(0)0( ==== sxx Lxhxh &&  (24) 

Fig. 3. Time-averaged energy vector pattern for y0/δκ = 2.1 
and l/δκ = 1.3 (run 2) in the whole computation domain. 

The elements of the coefficient matrix associated to the 
resultant system of linear algebraic equations were 
calculated using a code developed by the authors in 
FORTRAN-77 language and the system was solved using a 
LU decomposition with partial pivoting and row 
interchanges matrix factorization routine. The latter was 
taken from the LAPACK library routines available online at 
[7]. Details about accuracy, computation cost, etc. can be 
found in [7]. Once the time-averaged temperature 
distribution is known, it can be substituted in equations 
(15), (18) and (19) to determine the energy flux 
distributions along the x and y directions both in the gas and 
in the plate. 

4 Results and discussion 

Numerical simulations are carried out varying PA, y0 and l. 
The parameters of different runs are listed in Table 
1.Helium at a mean temperature of 300 K and at a mean 
pressure of 10000 Pa is assumed as working fluid. It is 
considered enclosed in a half-wavelength resonator 5.04 m 
length having a fundamental resonance frequency of 100 
Hz. These operating conditions are chosen to facilitate the 
comparison with the test cases of Cao et al. [1] and of 
Ishikawa et al. [3]. 
The test of the proposed model predictions against the 
results from previous numerical studies is illustrated Figure 
2 where the transverse component of the heat flux density 
at the gas-solid interface (y = y0) for run 1 is compared with 
run 2 of Cao et al. [1] and run 7 of Ishikawa et al. [3]. A 
quite perfect overlapping is found in spite of the fact that in 
these models different simulation domains and boundary 
conditions are specified. The simulation reproduces the 

result that the transverse heat flux is sharply peaked near 
the plate extremities being zero elsewhere. This is a clear 
evidence of the fact that a net heat exchange between fluid 
and solid takes place only at the plate edges. In particular, 
⎟ yq& ⎟ exhibits a monotonic increase reaching a maximum 
when the end sections are approached: 

maxyq ,& = ),0( 0yyxq y ==& = ),( 0yyLxq sy ==& . 

Since the time-averaged energy flux at the plate surface is 
positive when entering the plate and negative when leaving 
the plate, Figure 2 implies that over the period of an 
acoustic cycle, energy flows out of the left end of the plate, 
down along the thermal boundary layer in the gas and into 
the right end of the plate. In the hypothesis of a thermally 
insulated stack, these energy flows are supplied by the 
plates themselves, which thus cool at the end which 
supplies the energy, and heat at the other end which absorbs 
it. The right hand edge therefore behaves as a heat sink 
while the left hand edge acts as a heat source. In steady-
state the resulting temperature gradient developed in the 
plate is inversely proportional to its thermal conductivity 
and of such magnitude that the hydrodynamic energy flow 
in the gas is perfectly balanced by a return diffusive heat 
flow in the wall. The overall energy transfer process is 
clearly displayed for run 2 in Figure 3 where the time-
averaged energy vectors describe a closed “loop”. 
To get insight into the optimum length of the heat 
exchanger fins it is necessary to analyze the distance from 
the plate end over which a significant non-zero time-
averaged heat transfer between solid and gas takes place. 

t 
Fig. 4. Heat exchange length (distance from the plate edge 
over which the net heat transfer between gas and solid 
amount to 90%, 95% and 98% of the heat totally 
transferred) nomalized by 2I<x1>I v.s. plate spacing for 
PA/Pm = 0.025 (runs 4-7). 

The dependence of the heat exchange length on the plate 
spacing is analyzed in Figure 4 where the distance from the 
plate edge over which the net heat transferred between gas 
and solid amounts to 90% 95% and 98% of the total heat 
transferred (inferred from the transverse component of the 
heat flux density at the solid boundary yq& ) is reported as a 
function of the plate spacing for PA/Pm = 0.025 (Pm being 
the mean pressure of the gas). In the graph three regions are 
clearly distinguishable: 
I − for y0/δκ < 1the length available for heat transfer 
increases very fast at increasing the plate spacing, still 
remaining lower than 2⎟<x1>⎟; 
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II − for 1 < y0/δκ < 2 the curves exhibit a less marked 
growth. In this range for a heat exchange length equal to 
2⎟<x1>⎟ the net thermal power exchanged between gas and 
solid varies from 92 to 99 % of the total power transferred; 
III − for y0/δκ > 2 the curves become flat denoting how the 
heat exchange length no more depends upon the plate 
spacing. In this range for a heat exchange length equal to 
2⎟<x1>⎟ the net thermal power exchanged between gas and 
solid amounts to 92% of the power totally transferred. 
From the above considerations it follows that, as the plate 
spacing of real devices are generally found in range II, the 
peak-to-peak particle displacement amplitude can be 
conveniently assumed as useful length for the heat 
exchangers fins, as generally conjectured on heuristic 
grounds. The reduced heat exchange length found for very 
short plate spacing (y0/δκ < 1) is in agreement with the 
findings of Cao et al. [1] who ascribed this behavior to the 
improved thermal contact attending tightly spaced fins 
which reduces the phase lag between pressure and motion 
below the optimal value for which xh&  peaks. 

 
Fig. 5. Convective heat transfer coefficient between gas and 
solid v.s. x/2I<x1>I at selected plate spacing for PA/Pm = 
0.06 (runs 8-12). 

Numerical simulations performed at different plate 
thickness l (not shown) reveal that this parameter has little 
influence on the gas-solid heat exchange area: for a 
thermally isolated stack the plate simply serves as a duct 
which “closes” the energy flux path. 
For estimation of the heat transfer coefficient between gas 
and solid walls of thermoacoustic heat exchangers reference 
is made to the well known definition-law of h as reported in 
standard textbooks [8]: 

 
msm

yy

m

TyT
y

TK
h

−

∂
∂

= =

)( 0

0  (25) 

which combines the Newton’s law of cooling with the 
boundary condition that at the solid surface, being no fluid 
motion, energy transfer occurs only by conduction. This 
relation allows for estimation of the local convective heat 
transfer coefficient once the transverse temperature gradient 
is known, so it can be conveniently applied in the proposed 
numerical calculus. Since in relation (18) Tm represents the 
temperature of the bulk fluid in all performed simulations a 

plate spacing y0 ≥ δκ is chosen and Tm is evaluated at the 
centre of the pore: Tm = Tm(y = 0). 
In Figure 5 the dependence of h on the normalized 
longitudinal coordinate x/2⎟<x1>⎟ at selected plate spacing 
is shown. The local convective coefficient varies with x 
attaining, at a distance greater than 2⎟<x1>⎟, a constant 
value which depends, in turn, on the plate spacing; this 
dependence disappears for y0/δκ > 2.5, the curves almost 
overlapping each other. 

5 Conclusions 

In this paper a numerical calculus scheme has been 
developed by implementing the simplified linear 
thermoacoustic theory − the short stack approximation − 
into a simple energy conservation model through a finite 
difference methodology. The essential features of the time-
averaged temperature and heat flux density distributions 
near the edges of a thermally isolated thermoacoustic stack 
are investigated. The simulation results agree well with 
those of other numerical computations available in 
literature. The model allows to enquire on the optimal 
length of thermoacoustic heat exchangers and on the 
magnitude of the related heat transfer coefficients between 
gas and solid walls. 
In its current form, the model is expected to be valid when 
restricted to situations where the classical solution for the 
amplitude of the temperature oscillations T1 may be 
retained accurate near the pore terminations. This should be 
reasonably verified when transverse temperature gradients 
are weak, namely when stacks are operated at low Mach 
number (typically less than a few percent). 
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