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The numerical simulation of wave propagation poses a significant challenge in scientific computation.
Historically, several approaches are explored in order to get a stable method that can be efficiently
used for approximating wave propagation without excessive numerical dissipation or dispersion. Unfor-
tunately, the traditional approaches, such as the finite element and the finite difference, require many
discretization points per wavelength to obtain reliable solutions. In this study, two alternative full-wave
methods for reducing the computational complexity are consider. The methods are the time-domain
discontinuous Galerkin method and the ultra weak variational formulation in the frequency domain.
Using these techniques, the directivity patterns and the frequency response of a loudspeaker are studied.
Moreover, the simulated results are compared to experimental measurements.

1 Introduction

The modeling of the acoustic wave fields often provides
additional information for acoustical measurements. In
the case of long wavelengths, wave problems can be
modeled using full-wave type methods which include
the finite element, finite difference and boundary ele-
ment methods. Unfortunately, when the wavelength de-
creases, these traditional full-wave modeling techniques
become increasingly expensive since a sufficient num-
ber of discretization points per wavelength (10 points
per wavelength is considered as the rule of thumb) is
required to obtain a reliable solution. In addition, the
numerical pollution due to the accumulation of phase
error forces the use of even more grid points per wave-
length to keep the relative error of solutions sufficiently
low.
Promising candidates for solving the wave propagation
problems with a reduced computational cost are the ul-
tra weak variational formulation (UWVF [3] (Waveller
software [6] used in this study)) (in the frequency do-
main) and the discontinuous Galerkin (DG) [5] (in the
time-domain). These approaches use same computation
meshes as the standard finite element method. How-
ever, the idea of the UWVF approach is that the sound
field can be computed elementwise using plane wave ba-
sis functions. In most cases, the use of the plane wave
basis significantly reduces the need of CPU-time and
memory compared to conventional techniques (such as
the finite element method).
In the time-domain DG method the high-order Legen-
dre polynomial basis are used. In general, the Legendre
basis is a common choice for the DG method.
In this study, the UWVF and DG methods are used for
approximating the wave propagation in three spatial di-
mensions (3D). We consider geometry which contains a
real loudspeaker in free space. Results are computed
using the MPI parallelized FORTRAN90 UWVF code
(Waveller) and MPI parallelized C++ DG solver codes.
The used PC-cluster contains 24 Pentium 4 with 96 GB
total RAM. The main goal of this work is to study the
directivity pattern and frequency response of the loud-
speaker. In addition, these results are compared to ex-
perimental measurements.

2 Numerical Methods and Mea-

surement System

In this section, the numerical methods for the wave
equation are summarized and the measurement system
is outlined. In this study, the full-wave solution means

the numerical solution of the acoustical wave equation.
The wave equation is approximated in the frequency do-
main using the UWVF method and in the time-domain
using the DG method.
As the mathematical model we assume that Ω is a bounded
Lipschitz domain in R

3, Γ is its boundary, x = (x, y, z) ∈
Ω is the spatial variable and t ∈ [0, T ] time. Then, the
linear acoustic wave equation with the boundary condi-
tion on the boundary Γ and initial condition with t = t0
can be written as
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where u is the acoustic pressure, c is the wave speed
and ρ is the density. In Eqs. (2) and (3) the u0 and
u1 contain the given initial values and in Eq. (4) n

is the outward unit normal of the boundary Γ, g is a
source function, and σ is a real and positive param-
eter. The Helmholtz problem is obtained by assum-
ing that the acoustic pressure field is time-harmonic,
i.e. u(x, t) = û(x)e−iωt. The truncation of an un-
bounded problem is done using the perfectly matched
layer (PML) [1], which is a numerical damping layer
surrounding the computational domain.
For the DG and UWVF methods, the domain Ω is par-
titioned into a collection of finite elements (tetrahedra
are a natural choice in 3D). After the partitioning, the
weak formulation can be written individually for each
element. Furthermore, the communication between ad-
jacent elements is handled using a numerical flux. The
final weak form for the problem is obtained by summing
over all of the elements. The more detailed derivation
for the UWVF method can be found from [2] and for
the DG method from [4]. In this paper the time in-
tegration of the DG method is carried out using the
Crank-Nicolson time integration method.
The DG and UWVFmethods are used for simulating the
directivity of a loudspeaker. The simulations are com-
pared with experimental measurements. The directivity
pattern of a loudspeaker was measured in the semi ane-
choic chamber. To avoid the floor reflection, the floor
between loudspeaker and the microphone was covered
with plastic foam wedges (see Fig. 1). In the measure-
ment, the sine wave was fed to the loudspeaker and its
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response on the acoustical axis was measured. Next,
the loudspeaker was rotated and its response measured
again. The measurements were performed using B&K
4954 free-field microphone. The distance between the
microphone and loudspeaker was 1 m. The amplitude
of the sine wave was set to be 94 dB on the acoustical
axis of the loudspeaker. The measurements were per-
formed in 5 degrees interval in the angle from -30 to 30
and -60 to 60 degrees around the acoustic axis in yz-
plane and xz-plane, respectively.

Fig. 1: The measurement system with the microphone
array consists of 6 × 5 microphones (Panasonic

WM-61A capsules).

Measurements were also performed using microphone
array and an automated scanning system. The micro-
phone array consists of 6 × 5 microphones (Panasonic
WM-61A capsules). The distance between adjacent mi-
crophones was 5 cm (see Fig. 1). The microphone array
is initially positioned at a corner of the measurement
area. Next, the stimulus signal is fed to loudspeaker and
the response is measured. All 30 channels were recorded
simultaneously using 24-bit data acquistion hardware.
After data acquistion, the microphone array is moved
to the next measurement position and data is acquired
again. This process is repeated until the whole mea-
surement area is covered. Synchronization between the
loudspeaker and the data acquistion is controlled with
the data acquistion hardware. The stimulus signal trig-
gers the response measurements and in this way one can
assume that all data is acquired simultaneously. The
stimulus signal was generated using Eq. (7). The mea-
surement area was 100 × 100 cm2 and distance between
adjacent measurement points was 2.5 cm.

3 Numerical Experiments

In this section numerical examples are studied. Let us
consider the wave propagation in homogeneous medium.
In particular, our focus in the following simulations is to
study the directivity and the frequency response of the
loudspeaker. In all of the simulations the wave prop-
agation is studied in air. More precisely the speed of
sound c and the density ρ are 340 m/s and 1.2 kg/m3,
respectively. Attenuation is ignored in all cases.
Before calculations we need to generate the problem ge-
ometry. The problem geometry consists of the loud-
speaker and the surrounding free space. First, we gen-
erate the loudspeaker geometry from its CAD geome-
try file using the Gambit R© software. Then, the Com-
sol Multiphysics software R© was used to make the free
space geometry (box with the PML region). After that,
we unite the loudspeaker geometry in the box. Before
the simulations, the problem geometry needs to be par-
titioned into elements i.e. into the computational mesh.
For that purpose the Comsol Multiphysics R© software
was used.
Fig. 2 shows the problem geometry. In Fig. 2 the vol-
ume between the inner and the outer cube is the PML
region. The thickness of the PML is 69 cm in all simu-
lations. The dimension of the computational domain is
Ω = [−1.725, 1.725]3 m.

Fig. 2: The problem geometry which contains the
sound source (loudspeaker located in free space).

Figure shows also the PML region(s).

The source is introduced to the model by using an in-
homogeneous Neumann boundary condition on the bass
surface. Other parts of the loudspeaker are handled us-
ing the sound-hard boundary condition, except the end
of the reflex tube, which contains the absorbing bound-
ary condition. Finally, the exterior boundaries of the
problem geometry have the absorbing boundary condi-
tion.
Before going any further, two stability indicators for the
solutions must be introduced. In this study we want
to control the grid density and the Courant-Friedrichs-
Lewy (CFL) number. The indicator of the grid den-
sity shows how many approximation points there are
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per wavelength. This can be presented as

N =
λ

hmax

, (5)

where λ is the wavelength, hmax is the longest distance
between two nodes of a single element in the computa-
tion mesh andN is the number of points per wavelength.
For the time-domain solutions also the CFL number
must be controlled. The CFL number can be written
as follows

CFL =
cδt

hmin

, (6)

where c is the speed of sound, δt is the length of the
time step and hmin is the smallest distance between two
nodes of the the computational mesh. In all simulations
the CFL number is equal to 0.02.
The computation mesh is shown in Fig. 3. In Fig. 3
the cross-section of the whole mesh and also the sur-
face mesh of the loudspeaker are shown. One must note
that the source surface is shown in different color in the
surface mesh. Computation meshes consists of 463692
(hmax = 194.7 mm and hmin = 78.3 mm) elements.
For the directivity pattern simulations sine wave at fre-
quency of 1000 Hz is used, from which we obtain the
grid density N ≈ 1.7463 (5). Respectively, for the fre-
quency response simulations the frequency of 2000 Hz is
used (the mean frequency of the gaussian pulse), which
gives N ≈ 0.8732 (5).
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Fig. 3: Mesh used in the computations. Top: The mesh
consists of 463692 elements. Bottom: The surface mesh
of the loudspeaker. One must note that in the surface
mesh the sound source is shown with different color.

The directivity patterns are shown in Fig. 4. It can be

seen from Fig. 4(a) that the pattern is symmetric in
the xz-plane. In the yz-plane it is interesting to notice
how the asymmetry of the speaker affect on the shape
of the solution. The diffraction of the field behind the
loudspeaker (xz and yz planes) can also be seen from
the directivity patterns.
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Fig. 4: The directivity patterns at 1000 Hz. The title
shows the studied plane. Both figures contains the
numerical solutions and the measurement. The

measurements are carried out with angle [-60:5:60]◦ in
the xz-plane and [-30:5:30]◦ in the yz-plane.

Fig. 5 shows the frequency response of the loudspeaker.
Results are shown in the frequency domain (normalized
pressure field as a function of frequency) and in the time-
domain (normalized pressure field as a function of time).
The conversion between the time and frequency domain
is carried out using the Fourier transform. These results
are computed at the acoustics axis at the distance of 1
m. The sound source for the time-domain simulations
is written as follows

g = exp
(
− (xb (t− t0))

2
)
sin (ω (t− t0)) , (7)
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where xb = 2000, t is the time, t0 = 0.001 and ω denotes
the angular frequency.
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Fig. 5: The frequency response at the acoustic axis (1
m). A normalized pressure amplitude as a function of
the frequency (Top) and time (Bottom). Both figures
shows two numerical solutions (DG and UWVF) and
measurement. Measurements is performed using a

B&K 4954 microphone.

Finally, Figs. 6 and 7 show the pressure fields. Fig.
6 shows the sound pressure level in decibels and real-
part of the pressure field at a single frequency (1000
Hz) which are computed using the UWVF method.

In Fig. 7 the pressure fields are shown in a plane
at a single time instant of the DG simulation and ex-
perimental measurement. These results are shown in
normalized pressure amplitude scale.

4 Conclusions

In this work the wave equation equation is solved in
3D using the UWVF method in frequency domain and
the DG method in the time-domain. The main goal of
the work was to study the directivity and frequency re-
sponse of the loudspeaker. The geometry of the problem
contained the real geometry of the loudspeaker in free
space. Numerical solutions were computed using the
parallelized UWVF (Waveller software) and DG solvers
and these results were compared to measurements.
As a conclusion it can be seen from Fig. 4 where the
directivity patterns of the loudspeaker were simulated

Fig. 6: An example solution computed using the
UWVF method at 1000 Hz. Top: The real-part of the
pressure field. Bottom: The sound pressure level in

decibels (colorbar shows the dB value).

that a good accuracy can be obtained using the both
methods. On the other hand, Fig. 5 shows that the
frequency response of the used sound source can be also
approximated with satisfactory accuracy. Finally, Fig.
7 shows that the modeled pressure field in the single
plane agrees well with the corresponding measurement.
Nevertheless, while the results show that simulation of
the loudspeaker is possible, a detailed comparison with
measurements still needs to be made to validate the sim-
ulation accuracy.
The simulation model can be further improved. For ex-
ample, one must note that our model does not approx-
imate the reflex tubes correctly. This is handled only
by using the absorbing boundary condition at the end
of the tube. The model for loudspeaker surface would
also be better by using the real surface impedance of the
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Fig. 7: Pressure fields in the time-domain (normalized
pressure amplitude) at the time instant 1.9 ms (on the
acoustic axis at 60 cm distance from the loudspeaker ).

Top: Numerical solution using the DG method.
Bottom: Measured pressure field.

loudspeaker material.

Acknowledgments

The authors wish to thank the Finnish Funding Agency
for Technology and Innovation (Tekes) and the Euro-
pean Regional Development Fund (ERDF) for financial
support. This work was also supported by the Academy
of Finland (application number 213476, Finnish Pro-
gramme for Centres of Excellence in Research 2006-
2011) and by the Finnish IT center for science (CSC).

References
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