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The well-known problem of instability wave generation in the subsonic jet issuing from the semi-infinite 
cylindrical duct is examined. The jet mixing layer is simulated by a cylindrical semi-infinite vortex sheet. 
Instability wave is considered to be initiated by a plane time-harmonic acoustic wave propagating inside the duct 
in the downstream direction. The possibility of instability wave suppression by external acoustic wave is 
investigated. Similar problem in two-dimensional case was analyzed in [1]. It is shown that the instability wave 
can be damped completely on condition that the amplitude and the phase of the external forcing are chosen in 
accordance with those of the instability wave. 

1 Introduction 

It is generally accepted [2, 3, 4] that one of the main 
sources of acoustic radiation from a turbulent jet is due to 
spatial instability wave packets propagating downstream 
within the jet. This approach has enabled to explain and 
predict the principal features of sound radiated by a 
supersonic jet. Therefore the problem of noise control for 
the jet could be considered as a problem of instability wave 
control [5, 6]. At present the main problem in developing 
active jet noise control strategy comes to elaboration of 
suitable antiwave generators (plasma actuators, 
piezosensors, etc.) and to working out methods of 
identification of that small part of turbulence corresponding 
to instability wave (online measurements by antennas, 
microphone arrays, etc.). Furthermore it is desirable to 
identify instability wave and to generate an antiwave by 
means of actuators on the outer surface of the nozzle in the 
vicinity of its edge. This will prevent our interference in 
natural processes take place in the jet but will lead to 
delicate jet tuning by the external impact. On this stage we 
consider the control strategy of time-harmonic artificially 
excited instability wave as a prototype of the noise control 
strategy in real jet. The first goal of the work is to answer if 
it is possible in principle to annul an instability wave in a 
jet. 

2 Internally excited instability wave 

2.1 Formulation of the problem 

Consider a semi-infinite ( 0)x ≤  cylindrical duct of radius 

0r r=  in cylindrical polar coordinates ( , , )r xθ . The duct 

contains a uniform axial subsonic mean flow of velocity 

0V . In the outer region the ambient fluid is at rest relative to 

the duct. Mean density 0ρ  and the speed of sound c  are 

equal inside and outside the flow. The jet issuing from the 
duct exit is separated from the ambient medium by a vortex 
sheet (this assumption holds true for low frequencies). 
Viscosity, thermal conductivity and all nonlinearities are 
ignored. Let the perturbations be small, so that the motion 
of the gas can be considered as potential motion, and let the 
time dependence of perturbations be described by 
exp( )ikct−  where the wave number k  is real and positive. 

Let an acoustic plane wave (the simplest duct eigen mode) 
propagate inside the duct in the downstream direction 
(Fig.1). Its velocity potential is given by 

 

Fig.1 Sketch of the problem. 
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Hereafter the time factor exp( )ikct−  will be suppressed. 

This is a well-known problem of the interaction of sound 
with a round jet [7, 8, 9]. The incident wave perturbs the 
vortex sheet initiating an instability wave (i.e. the Kelvin-
Helmholtz instability of the vortex sheet) which grows 
exponentially in the streamwise direction. Following Munt 
we will use the Wiener-Hopf procedure [10] to derive the 
analytical solution for the pressure and velocity potential 
fields. 

Outside and inside the flow the velocity potential satisfies 
the equations 
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Δ = + +  – two-dimensional Laplace 

operator in cylindrical polar coordinates and 0 / 1M V c= <  

is the jet Mach number. We note here that in case of plane 
incident wave the dependence on the azimuthal angle θ  

may be dropped. 

The boundary conditions on the surface 0r r=  are as 

follows (for brevity, by p  we denote the ratio of the 

pressure to the mean density of the medium) 
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Here ( , )Ip r x  and ( , )IIp r x  – are pressure perturbations in 

the stationary medium and in the jet respectively, and ( )h x  

is the normal displacement of the vortex sheet relative to its 

unperturbed position 0( )r r= . In addition, the radiation 

condition should be satisfied: (i) when r →∞ , the 
perturbations caused by the incident wave should decrease 
at any fixed instant of time, and (ii) the perturbations should 

be produced by sources positioned at the interface 0r r=  

(causality). 

2.2 Wiener-Hopf technique 

We will seek the solution in the form 
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where the incident field is separated explicitly. 

Now define the Fourier transform and half-range Fourier 
transforms as 
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The inversion contour for these transforms must be chosen 
in such a way as to satisfy causality condition [11, 12]. 
Applying (7) to (2)-(5) we obtain 
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where nK  and nI  are modified Bessel Functions of the 

order n . The radial wave numbers are 
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The branch cuts of γ  go from k±  to ±∞  and the branch 

cuts of β  go from 
1

k
M−  to +∞  and from 

1
k
M+−  to −∞ . 

From Eq.(10) one can find that 
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is the Wiener-Hopf kernel. It is very important to know the 
location of its poles and zeros to obtain casual solution. The 
properties of ( )H α  were investigated in details in [7, 13]. 

A group of poles and zeros is located close to the line 

21
Im M

M
α

−
=  and one zero 0α  ( Re 0α < , 0Im 0α > ) is 

related to the Kelvin-Helmholtz instability of the vortex 
sheet (Fig.2). To obtain correct result one should first 
consider the problem for complex wave number 

0 ik k ik= + , ik k>>  and then determine the solution with 

real wave number k  in the limit of 0ik →+  by analytic 

continuation [11, 12]. It turns out that for ik k>>  the zero 

0α  lies in the lower half of complex α -plane so that the 

contour C of integration in inverse Fourier transform runs 

above 0α . But when we reduce ik , the hydrodynamic zero 

0α  approaches the real axis and at certain 0ik >  crosses 

this axis. The analytical continuation of the solution will be 
correspond to the integral over the contour C deformed in 

such a way as to bypass 0α  from above (Fig.2). 

Fig.2 Poles  and zeros  of ( )H α  and the contour of 

integration C. ,  – branch points of γ , ,  – branch 

points of β . Parameters are 0.5M = , 0 4kr = . 

The most important step is the factorization of ( )H α  in the 

form 

 ( ) ( ) ( )H H Hα α α+ −=  (15) 

where H±  are analytic, non-zero and possess algebraic 

behaviour at infinity in R± . R+  and R−  represent the half 

spaces above and below the contour C respectively so that 

it lies within the region R R+ −∩  of overlapping of R+  and 

R− . 

To perform the factorization let us introduce a new function 
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where * denotes complex conjugation. Note that 0α  is not a 

zero for ( )S α . Furthermore, it is easy to show that 

( ) ~ 1S α  as Reα →∞ . These two facts allow us to use 

the well-known formula to factorize ( )S α  [10]: 
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where the contour 'C  is taken within the region R R+ −∩  

so as to run below α  for ( )S α+  and above for ( )S α− . 

Thus, for H±  we have 
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Now we can represent 0Φ  as a sum of two functions 0+Φ  

and 0−Φ  regular in R+  and in R−  respectively: 
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After some algebra one can obtain from Eqs.(13, 15, 16) 
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The left-hand side of the Eq.(20) is the function regular in 

R−  and the right-hand side is the function regular in R+ . 

Since these regions overlap the left- and right-hand sides, 
being equal in the zone of overlapping, determine the 

function ( )J α  regular in the hole α -plane. It can be 

shown that ( )J α  behaves algebraically at infinity, then, 

according to the Liouville theorem, it has the form of a 
polynomial of an integer degree of α . The polynomial 
coefficients can be determined from the behaviour of the 
solution at the lip of the duct. Note here that the imposition 
of any conditions at the nozzle edge in combination with 
causality condition constitutes very subtle problem 
especially for three-dimensional jet [9, 14]. For this kind of 
problems along with other types of edge conditions the full 
Kutta condition was often used [7, 8, 9]. It requires that all 
the vorticity is shed from the lip. In that case one has for the 

vortex sheet displacement near the edge 3/ 2( ) ~h x x  as 

0x → + . This implies that the flow leaves the edge as 

smoothly as possible. In the present paper we adopt the full 
Kutta condition. Applying this condition we obtain 

( ) 0J α = . 

Now we are able to find the unknown functions from 
Eqs.(10, 11, 20): 
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Thus, the solution of the problem can be written in the form 
of the inverse Fourier transform 
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where the contour of integration C is shown in Fig.2. From 
Eqs.(18, 21a, 22a) one can find that the instability wave for 
the displacement of the interface corresponds to the residue 

in 0α  and is determined by the following expression 
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where 

 
0

0 0
0

01 1

1
lim

(1 ) ( ) ( )k k
M M

ia k
h

M cH Hα α

α α
α α→

− ++ +

−
= −

+ − +
�  (24) 

is the complex amplitude of the instability wave. Similar 
expressions can be obtained for other types of duct eigen 
modes. 

3 Control action 

3.1 Formulation of the problem 

Now let us set the following question. Is it possible to annul 
internally excited instability wave (23) by an external 
action on the vortex sheet? 

To answer this question consider a plane sound wave 
propagating in the stationary medium along the x-axis in the 
downstream direction. We will call this wave “the control 
wave”. This wave also induces Kelvin-Helmholtz 
instability of the vortex sheet. So let us try to adjust the 
parameters of the control wave in such a way as to destroy 
the internally excited instability wave (20). First of all, it is 
obvious that the control wave should have the same 
frequency as the wave to be damped. Thus, the velocity 
potential of the control wave is given by 

 
0

0

exp( ), ;
( , , )

0                        ,  .

c
c

a ikct kx r r
r x t

r r
ϕ

− + >⎧
= ⎨ <⎩

 (25) 

The governing equations and the boundary conditions are, 
of course, the same as in section 2. 
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3.2 Control instability wave 

Omitting detailed calculations, we write the solution 
analogous to (21): 
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Then, for the displacement of the interface due to the 
instability wave generated by the control wave (25), we 
obtain 

 0( , ) exp( ),c ch x t h ikct i xα= − −�  (27) 

where 
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is the complex amplitude of the control instability wave. 

3.3 Damping condition 

For a complete mutual suppression of the instability waves, 
we require (due to the linearity of the problem) for the total 
displacement of the interface 

 0( , ) ( , ) 0.ch x t h x t+ =  (29) 

From this it follows an expression connecting the control 
wave amplitude and phase to those of the initial wave 
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Hence, to completely suppress instability wave (23) by 
plane wave (25) incident from the stationary, it is necessary 

to choose its complex amplitude ca  according to Eq.(30). It 

can be seen that the complete suppression of the instability 
wave can be achieved for any values of the dimensionless 

parameter 0kr . 

4 Results 

Fig.3 shows the dependence of the magnitude of the 

absolute value and the phase of the quantity 0/ca a  on the 

Mach number for different values of 0kr . It turns out that 

for 0 1kr >  the ratio 0/ca a  is quite close to the one for the 

two-dimensional problem [1]. Thus, for all 0kr  we can 

write 0/ 1ca a ∼ . This fact qualitatively conforms to the 

results of [1, 15] where it was shown that the plane vortex 
sheet is most susceptible to the perturbations propagating 
downstream in the stationary medium, i.e. when the source 
of perturbations lies far upstream from the nozzle edge. On 
the analogy of the two-dimensional case one can assume 

that the emission of the control wave in the downstream 
direction is most advantageous, because, in this case, its 
amplitude will be minimum and on the order of the exciting 
field amplitude. 

Fig.3 The dependence of the magnitude of 0Abs( / )ca a  

and 0Arg( / )ca a  on the Mach number for different 

values of 0kr . 
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5 Conclusions 

Thus, in the framework of the chosen axisymmetric model 
of the jet with vortex sheet separating the flow and the 
stationary medium, we demonstrated the fundamental 
possibility of effectively controlling instability wave, 
artificially excited by a plane wave propagating inside the 
duct, by adjusting the control acoustic action. The intensity 
of this action is on the order of the flow perturbations that 
give rise to the initial instability wave. The latter fact is 
especially important: since the development of instability 
waves is caused by small perturbations of the flow, the 
intensity of the control field can also be small. 

For the implementation of active instability wave control, it 
is necessary to independently determine (measure) the 
initial parameters of the instability wave (the set of 
perturbations that occur near the nozzle edge and leave the 
edge) and, according to them, to adjust the external action 
so as to completely suppress the instability wave. The near 
field characteristics that are necessary for the instability 
wave identification will be analyzed in further studies. 
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