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The normal excitation of a tube immersed in water by the acoustic plane wave permits the generation of 
circumferential waves inside the shell and around the shell-water interface. These circumferential waves, 
standing form stationary waves on the circumference of the tube for some frequencies. These stationary waves, 
constituting resonances of the tube which are perfectly visibles on the backscattered spectrum. Moreover, the 
studies carried out on the diffusion of a plane acoustic wave by target were based primarily on the use of the 
monodimensional methods (Temporal domain and/or frequencial domain). To exceed the disadvantages of these 
methods, in this work, we used the time-frequency representations such as the Short-Term Fourier Transform 
(STFT), Wigner-Ville Distribution (WVD) and Wavelet Transform method. These representations are applied to 
a theoretical signal backscattered by a tube. From the time-frequency images obtained we have visualized the 
circumferential waves dispersion (S0, A1, S1,…) and identified these different waves. This analysis permits to 
compare between these time-frequency representations. And also we have compared between the cut-off 
frequencies of circumferential waves obtained from these representations and those computed by the proper 
modes theory of the vibration.   
 

1 Introduction 

The study of the acoustic diffusion by targets, of simple 
geometrical form, was the subject of many works [8,12]. 
Among the objectives of this work is to try to understand 
the origin of the circumferential waves and the manner of 
being propagated around a tube.  
The majority of the studies of analysis of the acoustic 
pressure backscattered by targets immersed in water were 
based primarily on the use of the monodimensional 
methods (temporal and spectral analysis).  These 
representations present limitations which make them 
unadapted to study the dispersion of the circumferential 
waves contained in a signal backscattered by a target. To 
exceed these limitations, two-dimensional time-frequency 
representations are implemented [3,4,11]. They take into 
account the time and frequency parameters.  The time-
frequency representations used in this paper are the 
Spectrgram, the Wavelet Transform and the Wigner-Ville 
Distribution [1,2]. The signal analysed by these 
representations is an acoustic signal backscattered by a 
copper tube with radius ratio b/a = 0.95 (a is the external 
radius, and b the internal radius).  The aim of this study is 
to visualise the frequential evolution versus the time of the 
circumferential waves and to identify them (S0, A1, S1,  ...). 

2 Complex backscattering pressure 
by a cylindrical shell 

The scattering of an infinite plane wave by a cylindrical 
shell with a radius ratio b/a is investigated through the 
solution of the wave equation and the associated boundary 
conditions [17].  

The complex backscattering pressure scatP by a tube in a far 
field is the summation of the normal modes which take into 
account the effects of the incident wave [17,19], the 
reflective wave 1, circumferential waves in the shell 2 
(whispering gallery waves, Rayleigh wave) and interface 
Scholte wave (A) 3 connected to the geometry of the 
object Fig.1. For the circumferential waves, it is necessary 

to distinguish between the symmetric waves (S0, S1, S2,…)  
and the antisymmetric waves  (A0, A1, A2,…). 
 

 

 

Fig.1  Mechanisms of the echos formation  

 
The general form of the scattered complex pressure field in 
a plan perpendicular to the z-axis can be expressed as 
[17,18]: 
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Where ω is the angular frequency, k=ω/c is the wave 
number with respect to the wave velocity in the external 
fluid (C), P0 is the amplitude of the incident plane wave, 
Dn

1(ω) and Dn(ω) are determinants computed from the 
boundary conditions of the problem (continuity of stress 
and displacement on the two interfaces), εn is the Neumann 
coefficient (εn =1 if n=0 and εn =2 if n≠0) and r is the 
distance between the z-axis of the tube and the point where 
the pressure is calculated. The complex backscattering 
pressure computed in a far field is obtained for θ = π as a 
function of the dimensionless frequency k.a (Fig.2a) which 
is given by the relation: 

            
2. ak a

C
πν=   (2) 

where ν  is the wave frequency in Hz. 
 

The resonance spectrum (Fig. 2b) is obtained in three 
operations:  
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• the time signal is computed with the Inverse 
Fourier transform of the calculated 
backscattered complex pressure (Fig.2a). 

• the specular echo (Fig. 2c) which is related to 
the reflexion on the outer surface of the 
cylindrical shell is suppressed and replaced by 
zeros with a computer. 

• a Fourier transform is applied to this new time 
signal to obtain the resonance spectrum 
(Fig.2b). In theoritical study this resonance 
spectrum is obtained suppressing the rigid or 
soft background. 
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Fig.2 (a) Backscattered spectrum, (b) Resonance spectrum 

and (c) real part of the temporal signal for an air-filled 
stainless copper cylindrical schell immersed in water for a 

radius ratio b/a=0.95  
 

The backscattered and the resonance spectrums are 
calculated in the range frequency between 0 and 200. On 
figures 2a and 2b, we visualize the different circumferential 
waves such as the scholte wave A (0<k.a<40), the 
symmetrical wave S0 (50<ka<100) and the anti-symmetric 
wave A1 (100<k.a<175).   

3 Time-frequency analysis of the 
acoustic signal  

3.1 Spectrogram  

The Short Time Fourier Transform (STFT) can be 
interpreted as a Fourier analysis of successive sections of 
the signal weighted by a temporal window (Gabor, 
Hamming, Blackman...). The expression of the STFT is 
[1,2,7]: 

* * 2
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υυ τ τ τ τ τ τ
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This relation represents the scalar product between the 
signal x(t) and the functions , ( )th υ τ . In practice, the 
Spectrogram (SP) is the module square of the STFT and is 
given by:   

2( , ) ( , )S t STFT tυ υ=    (4) 

3.2 Wavelet Transform 

To make up the deficit of the STFT [2,15], the window size 
of analysis was varied for better adapting to the different 
frequencies contained in the signal with an appropriate  
temporal  resolution. It is precisely what is carried out by 
the wavelet transform (WT). It also based on the projection 
method of a signal on a family functions. The 
corresponding family of wavelets consists of a series of son 
wavelets, which are generated by dilation and translation 
from the mother wavelet ( )tψ , is shown as follows [16]: 

,
1( ) ( )a b

t bt
aa

ψ ψ −=     (5) 

where a is the scale factor, b is the time location and 1
a

 is 

used to ensure energy preservation.  
 
The higher-frequency and the lower-frequency components 
can be analyzed if a value is small and a value is larger 
respectively. The wavelet transform of the signal x(t) is 
defined as follows [16]: 
 

,
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The calculation of the wavelet transform require that the 

mother wavelet must satisfy the following conditions 

[4,5,14]:  

1. continuous, absolutely integrable and the space of  
square integrable (finite energy) 

2. zero  average 

( ) 0t d tψ
+ ∞

− ∞
∫ =                    (7) 

3. admissibility condition 
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where ˆ ( )ψ ω is the Fourier transform of mother wavelet. 

 
In the case of the continuous wavelet transform, a and b 
vary continuously.  It is the continuous Morlet wavelet 
which is implemented during this study, defined as follows 
[6]:  
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0ω is the frequency characteristic and 0σ is the width of 
the analyzing envelope of the Morlet wavelet. 
 

3.3  Wigner-Ville Distribution 

The Wigner-Ville distribution (WVD) associated to a signal 
x(t), of finite energy, is the function ( , )

axW t v depending 

on the temporal t and frequential ν parameters. This 
distribution is given by the following expression [5-12]:   
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Where xa*(t) indicates the complex conjugate of xa(t).  
 
To avoid covering frequential components in the time-
frequency representation, we propose to instead the 
analytical signal xa(t), defined by the expression: 
 

 { }( ) ( ) ( )ax t x t iH x t= +
            (11) 

 

where i2=-1 and { ( )}H x t is Hilbert transform of x(t). 

 
The spectrum of the analytical function xa(t) is given below: 
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3.4 Time-frequency images 

The time-frequency images obtained by application of the 
spectrogram, the Wigner-Wille distribution and the wavelet 
transform on an acoustic signal backscattered by a copper 
tube with a radius ratio b/a = 0.95 (Fig.2c).  Their time-
frequency images are represented on the figure 3 
respectively.   

4 Comparison between the three 
time-frequency representations   

The spectrogram permits an uniform resolution in time and 
frequency which is the result of the regular paving of time-
frequency space. The wavelet transform uses a different 
paving. This paving means the fact that the product of the 
temporal resolution by the frequential resolution is constant 
on all the scale factors. The wavelet transform gives a better 
resolution in time for the high frequencies which 
correspond to fast variations and also gives a lower 
temporal resolution for the low frequencies which 
correspond to slow variations.  
 
The Wigner-Ville Distribution presents interference terms 
between the different trajectory waves. These interferences 
appear in the form of oscillating structures presenting 
positive and negative values and decrease the legibility of 
time-frequency representation. In spite of this disadvantage, 
the principal advantage of this distribution is that it presents 
other very interesting properties. Moreover, it preserves the 
temporal and frequential supports of the signal. 

 

5 Identification of the 
circumferential waves starting from 
time-frequency images   

Figures 3a, 3b, 3c and 3d represent the time-frequency 
images obtained by the spectrogram, the Morlet wavelet 
transform and the Wigner-Ville distribution.  On these 
images, only trajectories related to the Scholte wave A (0< 
ka < 40), with the symmetrical wave S0 (50< ka< 100) and 
with the antisymmetric wave A1 (100< ka < 175) are 
present. The trajectories related to the wave S0 are slightly 
downward what means that the group velocity of this wave 
decreases when the frequency increase.  The reduced cut-
off frequency of the wave A1 is about of 1( )A

cka 100. It is 
noted that for the antisymmetric wave A1 the low frequency 
part of this wave arrives more tardily than the high 
frequency part. The reduced cutoff frequency determined 
starting from this image agrees well with that determined 
from the proper modes method [13,12].   
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Fig.3 Time -frequency images: (a) Spectrogram (Gaussian window h=256), (b) Spectrogram (Blackman window h=200), (c) 

Morlet wavelet transform and (d) Wigner-Ville (Hanning window: temporal smoothing h=256 points and frequential 

smoothing g=3 points) 

6 Determination of the reduced cut-
off frequency of the A1 wave 

Starting from the similitude which exists between the 
circumferential waves in the case of a thin tube and the 
Lamb waves in the case of the plate of the same thickness, 
it is possible to use the classical relations on the Lamb 
waves to ascend to the value of the reduced cut-off 
frequency of circumferential waves in the case of a tube 
[8].   
In the case of a thin plate the cut-off frequencies of the 
anti-symmetric waves of Lamb is provided by: 

⎪⎩

⎪
⎨
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+
=

T

L

c cm

cm
d

)
2
1(

)(ν           (13) 

Where cL, cT are longitudinal and the transverse velocities 
of a copper tube, d=a-b is the tube thickness and m is the 
mode number (integer). With cL= 4760 m/s, cT = 2325 m/s 
for a copper tube [8,17]. 

The reduced cut-off frequency is obtained as a function of 
the longitudinal and the transverse velocities by exploiting 
the Eq.(2) and Eq.(13): 
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The values of the reduced cut-off frequencies 1( . )A

ck a  of 
the anti-symmetric circumferential wave A1 obtained from 
the time-frequency representations (spectrogram, Wavelet 
transform and Wigner-Ville : Fig.3) are presented in tabe 
1.  

 Proper 
modes 
theory 

Time-frequency images 
SP WT WVD 

1( . )A
ck a  99,5 100 101 99,8 

Table 1 Reduced cut-off frequencies of the circumferential 
wave A1 of a copper tube with b/a=0.95 

 
This table presents also the values computed with the 
proper modes theory Eq.(14). We notice that the reduced 
cut-off frequencies estimated from the synthetic time-
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frequency images are in good concordance with those 
computed theoretically. 

7 Conclusion 

 The   time-frequency images analysis of the spectrogram,  
the Wigner-Ville distribution and the wavelet transform of 
an  acoustic signal backscattered by a copper tube with the 
radius ratii b/a=0.95  allowed to visualize and identify the  
trajectories of the circumferential waves S0 and A1. These 
images show that the circumferential waves are dispersive. 
Moreover, starting from these time-frequency 
representations, it is possible to reach several qualitative 
and quantitative informations of the circumferential waves. 
Among qualitative informations one announces that on the 
time-frequency images, it is possible to follow the 
evolution of the frequential contents of the circumferential 
waves S0 and A1 versus the time. The dispersion the group 
velocity of these waves and the reduced cut-off frequency 
of A1 are quantitative information which can be given 
starting from one time-frequency image. 
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