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Statistical description of complex phenomena encountered in many applications requires construction
of nonstationary models, where source statistics are varying over time. A first step in analysis of such
nonstationary sources involves typically a traditional time-frequency analysis such as Gabor, Short
time Fourier transform (STFT) or modified discrete cosine transform (MDCT). In all these techniques,
the underlying assumption is that the process is piecewise stationarity, however dependencies across
frequency bands or time frames are not explicitly characterised. We investigate a class of prior models,
called Gamma chains, for modelling such statistical dependencies in the time-frequency representations
of signals. In particular, we model the prior variance of transform coefficients using Markov chains
of inverse Gamma random variables. This model class is Markovian and conditionally conjugate, so
standard inference methods like Gibbs sampling, variational Bayes or sequential Monte Carlo can be
applied effectively and efficiently. We also show how hyperparameters, that determine the coupling
between prior variances of transform coefficients, can also be optimised. We discuss the pros and
cons of various inference schemata (variational Bayes, Gibbs sampler and particle filtering) in terms of
complexity and optimisation performance for this model class. We illustrate the effectiveness of our
approach in audio denoising and single channel audio source separation applications.

1 Introduction

Time-frequency representation of a signal represents time
varying spectral components of a signal, and such a rep-
resentations are often more compact and easier to inter-
pret than a time or frequency domain representations
alone. Modified discrete cosine transform (MDCT), short
time Fourier transform (STFT), Gabor transform and
wavelet transform are popular examples of such linear
time-frequency representations. In these representations,
a time series yt for t = 1, 2, . . . , T is represented as a lin-
ear combination of basis functions, φα,t:

yt =
∑

α

φα,tỹα, (1)

where the time-frequency indices are denoted by α. In
this notation, each time-frequency index is a tuple α =
(τ, ν), where τ = 1 . . .N is a frame index and ν =
1 . . .W a frequency index. The expansion coefficients
are denoted by ỹα. In compact matrix-vector notation,
we write

y = Φỹ, (2)

where y is a T×1 vector denoting the signal of length T ,
ỹ is a column vector of all the coefficients (K× 1) and
Φ is a basis matrix (T ×K) formed by concatenating
individual basis vectors φ’s. Here, K = WN . Note that
the matrix Φ is the inverse transform matrix. When
the transform basis is orthogonal (e.g. inverse MDCT,
orthogonal wavelets), certain statistical properties are
preserved under transformations. To illustrate this, we
consider a denoising problem where the original signal
s is observed in additive noise ε to yield the observed
signal x. Now suppose we transform the observed signal
x via an orthogonal transform

x = s + ε (3)
Φ−1x = Φ−1(s + ε) = Φ−1s + Φ−1ε (4)

x̃ = s̃ + ε̃ (5)

The correlation structure between s and ε is preserved
since〈

ε̃�s̃
〉

=
〈
(Φ−1ε)�Φ−1s

〉
=

〈
ε�ΦΦ−1s

〉
=

〈
ε�s

〉

Here, 〈·〉 denotes the expectation. For example, if s and
ε are a priori uncorrelated, i.e.

〈
ε�s

〉
= 0, so are s̃

and ε̃. In denoising, where our task is to estimate s
given x, this observation motivates the fact that we can
do modelling equivalently in the transform domain and
aim at recovering the transform coefficients s̃ given x̃.

A closely related problem to denoising is single channel
source separation problem. Here, our goal is to extract
Ns source signals from a single observation signal which
is expressed the sum of the sources.

x =
Ns∑
i=1

si x̃ =
Ns∑
i=1

s̃i

In fact, this problem is a simple generalisation of denois-
ing: we can view denoising as a single channel source
separation problem with Ns = 2 where one source is
the noise component. Hence, single channel source sep-
aration problem can be modelled in the time-frequency
domain as in the same manner as above.

In this paper, we will concentrate on the denoising and
the single channel source separation problems to demon-
strate the advantages of modelling the dependencies in
the time-frequency representations of audio signals. Source
separation (and denoising as a special case) can be solved
in Bayesian framework by inferring the posterior distri-
bution of the sources p(s|x).

Time-frequency domain coefficients of audio sources are
shown to be better modelled with heavy-tailed distribu-
tions [1, 2, 3]. In source separation literature source co-
efficients are modelled with mixture of Gaussians [4],[5],
Laplace [6],[7] and Student-t distribution [3, 8]. These
models make use of mutually independent and identical
(having the same distribution with the same hyperpa-
rameters) prior distributions of the source coefficients.
This approach misses the inherent dependency in the
time-frequency representation of audio signals, such as
the harmonic continuity of tonal components of a signal
over a period of time or impulsive activation of a range
of frequencies by transients of a signal. The independent
models can be extended to include such dependencies by
coupling the variances or other parameters that control
the sources. Inverse Gamma Markov chains (IGMC)
and Markov random fields (IGMRF) are introduced to
correlate the variances [9]. In [10], a Markov random
field that controls the activation of the source coeffi-
cients is proposed to model the dependency.

The posterior distribution, p(s|x), contains an intractable
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marginal likelihood (evidence). Although evaluation of
the marginal likelihood can be avoided during the in-
ference, it needs to be evaluated or approximated when
the optimisation of the hyperparameters will be accom-
plished through maximum likelihood. In the audio source
models we mentioned, the marginal likelihood is intractable
but can be approximated by the lower bounds which are
evaluated using the inferred sufficient statistics of latent
variables. One of the main objectives of this study is
to compare the inference methods in terms of the ac-
curacy of the approximate likelihoods (tightness of the
lower bounds, which leads to the success of the opti-
misation) and time complexity. In audio source models
using IGMCs, the hyperparameters determine the mag-
nitude of the coupling between the variance variables,
which is directly related to the strength of the model.

In the next section we will explain inverse Gamma Markov
chains which are simple and efficient dependency mod-
els for time-frequency representation of audio signals.
Then in Section 3 we will review the relevant inference
methods (variational Bayes, Markov chain Monte Carlo
and sequential Monte Carlo methods). These methods
are used on the inference of the sources in denoising
and single channel source separation applications. The
optimisation of the hyperparameters is done using EM
variants based on the estimates of these methods. The
results will be presented in Section 4.

2 Inverse Gamma Markov Chains

An inverse Gamma Markov chain (IGMC), proposed
in [9], is a sequence of random variables which have in-
verse Gamma1 priors conditional on only the preceding
variable. It is defined as

z1 ∼ IG(z1; az, b/az) (6)
vt|zt ∼ IG(vt; av, zt/av) (7)

zt|vt−1 ∼ IG(zt; az, vt−1/az), t > 1 (8)

where vt and zt are the variables of the chain and av, az,
b are hyperparameters. There are efficient algorithms to
perform inference on this model, because the prior dis-
tributions are conditionally conjugate for the variables
in the model. In a model with variables y and x, if the
prior distribution of a variable y, p(y), is in the same
class with the conditional posterior distribution p(y|x),
that distribution family is said to be conditionally conju-
gate for y[11]. That means it is as easy to draw samples
from the conditional distribution, p(y|x), with a Gibbs
sampler as from the prior, p(y). The same fact enables
a variational distribution of this family to be updated
very easily in the mean field algorithm, as will be seen
in Section 3.1.

Full conditional distributions of all the variables in the
chain are inverse Gamma. For example, full conditional

1Inverse Gamma distribution is defined as:
IG(x; α, β) ≡ exp

(
(α + 1) log x−1 − β−1x−1 + α log β−1 − log Γ(α)

)

of the variable vt is expressed as

p(vt|zt, zt+1, θ) =
p(zt+1|vt, θ)p(vt|zt, θ)∫

p(zt+1|vt, θ)p(vt|zt, θ) dvt

=
IG(vt; α, β)∫ IG(vt; α, β) dvt

= IG(vt; α, β)

where α = av + az and β = 1/(av/zt + az/zt+1).

An IGMC is a chain of strictly positive variables with
positive correlation between vt’s (and separately, be-
tween zt’s). These vt’s can be used to model the slowly
varying variances of a nonstationary audio signal. When
the sources are assumed zero mean Gaussian, N (st; 0, vt),
this source model becomes another instantiation of the
scale mixture of Gaussians family and reduces to the
Student-t model when zt’s are known. This source prior
distribution is still conditionally conjugate.

The conditional distribution of variance variables are
given by

p(vt|vt−1) =
Γ(av + az)
Γ(az)Γ(av)

(azv
−1
t−1)

az (avv−1
t )av

(azv
−1
t−1 + avv

−1
t )(az+av)

v−1
t

As it can be seen in Figure 1, there is positive correla-
tion between the variances for various values of av and
az . The larger these parameters are, the higher cou-
pling between the variables exists. The ratio az/av is a
measure of the skewness of correlation and it can lead
to positive and negative drifts.
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Figure 1: The first two figures show that when the pa-
rameters, av and az, are nearly equal, there is no skew-
ness and the value determines the strength of the cou-
pling. The last two figures are examples of positive and
negative drifts, respectively.

3 Inference

3.1 Variational Bayes

Variational Bayes (mean field) [12] methods make use
of tractable distributions to effectively approximate in-
tractable integrals in Bayesian inference problems. They
also provide a lower bound on the marginal likelihood
(evidence) which can be used in model selection and
hyperparameter optimization tasks.

The idea is to approximate the posterior distribution of
the latent variables, p(x|y, θ), with a variational distri-
bution, q(x), that minimises the dissimilarity (Kullback-
Leibler divergence) between the two distributions.

KL(q||p) = log p(y|θ) + KL(q||p(x, y|θ)) (9)
≡ log p(y|θ) + E(q, θ) (10)

Since the evidence, p(y|θ), is independent of the varia-
tional distribution, q(x), minimising the Kullback-Leibler
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divergence between the posterior and the variational dis-
tributions is equal to minimising the variational free en-
ergy E(q, θ). KL divergence is always non-negative, so
Equation 10 defines a lower bound on the evidence:

p(y|θ) ≥ −E(q, θ) = 〈 log p(x, y|θ)〉q − 〈 log q(x)〉q (11)

where 〈.〉π(X ) denotes expectation under probability dis-
tribution π(X ).

Having reduced the inference problem to the minimisa-
tion of the variational free energy (or equally, maximisa-
tion of the lower bound), we can compute each indepen-
dent distribution q(xi) using the fixed point equation

log q(xi) =+ 〈 log p(x, y|θ)〉q(x−i) (12)

where x−i refers to all variables xj except for xi itself.

3.2 Markov Chain Monte Carlo Meth-
ods

Monte Carlo methods are used to approximate expecta-
tions in which the integration (or summation) is not ana-
lytically tractable and numerical integration techniques
perform poorly, e.g. due to high dimensionality. Expec-
tations of functions under a target distribution, p(x),
are estimated using a set of i.i.d. samples, {x(i)}N

i=1,
drawn from this distribution:

〈f(x)〉p(x) =
∫

f(x)p(x)dx ≈ 1
N

N∑
i=1

f(x(i)) (13)

Markov chain Monte Carlo approaches are used in cases
where it is very difficult to draw independent samples
from the target distribution, p(x), but it can be evalu-
ated up to a normalising constant.

The Metropolis-Hastings algorithm uses a proposal den-
sity, q(x′|x(t)), to generate a new sample that depends
on the current state of the Markov chain. The proposed
sample is accepted with probability:

a(x′; x(t)) = min
{

p(x′)
p(x(t))

q(x(t)|x′)
q(x′|x(t))

, 1
}

. (14)

The Gibbs sampler can be seen as a special case of
the Metropolis-Hastings algorithm where the proposal
distribution for the variables are their full conditionals,
p(xi|x−i). First a variable (xi, ith dimension of x) is
chosen uniformly, and then a sample for that dimension
is drawn from its full conditional density. This way we
obtain a sample that differs from the previous one, only
in one dimension. In this case the acceptance probabil-
ity of a newly generated sample becomes one. When the
full conditional distributions of the model are distribu-
tions from which efficient methods exist for sampling, it
is highly convenient to use the Gibbs sampler.

3.3 Particle Filtering

Sequential Monte Carlo (SMC) methods are point-mass
approximations to time evolving target distributions in

dynamic systems, such as state-space models. A state-
space model is represented by a state transition equa-
tion, xt ∼ f(.|xt−1, θx), i.e. prior of the hidden Markov
process, and a observation equation yt ∼ g(.|xt, θy), i.e.
the likelihood of the observed data. At time t, the target
distribution for inference is the posterior p(x1:t|y1:t) =
p(x1, ...,xt|y1, ...,yt) or particularly the marginal pos-
terior p(xt|y1:t) (also called the filtering distribution).

It is possible to evaluate these posterior distributions
analytically in hidden Markov models with finite states
and linear Gaussian state-space models (Kalman filters).
In the general case, Monte Carlo methods can be em-
ployed to infer about the hidden variables. However,
MCMC methods are not completely suitable for online
update of a dynamic system because of their ”batch”
nature. When the system moves into a new time slice,
t+1, an MCMC algorithm has to repeat the iterations to
approximate p(x1:t+1|y1:t+1) because the previous sam-
ples are discarded.

Sequential Monte Carlo methods enable a way to reuse
the previous samples, {x(i)

t }N
i=1, in drawing the new gen-

eration of samples over the next time slice, t + 1. Our
target distribution in the state-space models, i.e. the
posterior distribution, can be defined recursively as:

p(x1:t+1|y1:t+1) = p(x1:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
.

At time t + 1, if we assume we already have an approx-
imation for p(x1:t|y1:t) and samples {x(i)

t }N
i=1, we can

draw new samples from p(xt+1|xt) depending on the
previous ones and evaluate p(yt+1|xt+1) and p(xt+1|xt)
on these new samples. But, the denominator p(yt+1|y1:t)
is not easy to evaluate analytically. This issue can be
resolved making use of importance sampling (IS). Per-
forming the importance sampling method recursively on
the arrival of new observations, we obtain the sequential
importance sampling (SIS) algorithm. At each step we
draw N samples from the proposal distribution q(xt+1)
and update and normalise the importance weights:

W
(i)
t+1 = W

(i)
t

p(yt+1|x(i)
t+1)p(xt+1|x(i)

t )
q(xt+1)

w
(i)
t+1 =

W
(i)
t+1∑N

j=1 W
(j)
t+1

4 Simulations

4.1 Denoising

We modelled dependencies of the time-frequency atoms
of sources obtained by MDCT with inverse gamma Markov
chains. As mentioned in [9], this can be done in two
ways: either tying atoms of each frequency bin across
time frames (horizontal) or tying frequency atoms in
each frame (vertical).

In this problem, the observed signal, x, is the sum of
the source signal, s, and independent white Gaussian
noise with variance r. Each source coefficient, sν,τ is a
zero mean Gaussian with variance vν,τ and the variance
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variables an IGMC prior. ν and τ stand for the indices
of frequency bins and time frames, respectively:

zν,1 ∼ IG(zν,1; az, b/az)
zν,τ |vν,τ−1 ∼ IG(zν,τ ; az, vν,τ−1/az), τ > 1

vν,τ |zν,τ ∼ IG(vν,τ ; av, zν,τ/av)
sν,τ |vν,τ ∼ N (sν,τ ; 0, vν,τ )

xν,τ |sν,τ , r ∼ N (xν,τ ; sν,τ , r)
r ∼ IG(r; ar, br)

In order to be able to have an objective measure of suc-
cess we added noise to the original signals and obtained
noisy observation signals. To assess the quality of the
reconstructions, we used the SNR between the original
signal and the reconstructed signal.

The top two plots in Figure 2 present the log likeli-
hoods and reconstruction SNRs attained by the SIS/R
with the optimal proposal distribution using different
values for hyperparameters av and az. The two surfaces
are very similar and they have their peaks at the same
point. This correlation between the log likelihood and
the SNR encourages hyperparameter optimisation using
maximum likelihood.
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Figure 2: Log likelihood and reconstruction SNR val-
ues obtained by the SIS/R algorithm using the optimal
proposal distribution (top) and variational Bayes (bot-
tom). The surfaces are evaluated using a fixed value of
b (b = 10−4).

On the other hand, in the case of variational Bayes,
there is no correlation between the lower bound of the
log likelihood and the SNR (Figure 2). Although this
method can obtain higher SNR values than the SIS/R
algorithm, the SNR surface is neither like the bound
surface nor the surfaces obtained by the SIS/R. So, the
values of hyperparameters that maximise the SNR can-
not be found by optimising an available function.

In these denoising simulations we obtained the noisy
signal by adding around 0 dB white noise to a noise-
free audio clip. We modelled the source coefficients in
the transfer domain, after transforming the signals us-
ing MDCT with 512 frequency bins. In Figure 3 spec-
trograms and SNRs of the estimated sources by the
three methods are presented. This audio signal is a pi-
ano recording and its MDCT coefficients are modelled

with horizontal IGMCs. Results obtained by VB-EM
are poor because the hyperparameters optimised by this
method did not lead to better results. There are hyper-
parameter values that result in better reconstructions,
but these parameters do not correspond to a local max-
ima of the lower bound.
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Figure 3: The figures on top are the spectrograms of the
original and the noisy signals. The others are the recon-
structed signals output by the three inference methods.

4.2 Single Channel Source Separation

In single channel source separation we try to estimate
the N sources that comprise a single observation signal.
We again approach the problem in the time-frequency
representation and model the variances of the sources
with IGMCs to ensure dependency along time or fre-
quency axis. The source coefficients are then Gaussian
distributed with zero mean: sν,τ ∼ N (0, vν,τ ). The ob-
served signal is the sum of N sources: xν,τ =

∑N
j=1 sj

ν,τ .

In this problem, full conditional distributions of the
source coefficients, p(si,k|xk, vi,k) (of ith source and kth

index), are in Gaussian form and their sufficient statis-
tics can be evaluated in closed form:

Σi,k = vi,k (1 − κi,k) mi,k = κi,kxk

where κi,k = vi,k/
∑N

j vj,k represents what portion of
the observation can be attributed to the ith source. κ’s
are called responsibilities in [9] and also known as Wiener
filter factors.

Modelling the variances of a source using horizontal
IGMCs and another with vertical IGMCs, we can sepa-
rate the harmonic components and transients of an ob-
served signal. We mixed tonal audio signals with per-
cussive ones and performed single channel source sepa-
ration using variational Bayes and Gibbs sampler. Since
we have two directions of propagation in this model, we
cannot apply classical particle filter methods directly.
Table 1 shows the results of two single channel source
separation experiments. Here, the performance criteria
are the source to distortion ratio (SDR), the source to
interference ratio (SIR) and the source to artifacts ratio
(SAR) [13].

In the experiments, we applied variational Bayes (with
3000 iterations) and Gibbs sampler (with 5000 samples)
using the same set of parameters (av = 3, az = 3 and
b = 10−4). This random choice of the hyperparameters
seems suitable due to the good quality of the results.
We obtained slightly better results using a Gibbs-EM
algorithm of which initial hyperparameter values are the
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ŝ1 ŝ2

SDR SIR SAR SDR SIR SAR

VB -4.74 -3.28 5.67 -1.58 15.46 -1.37

Gibbs -4.50 -2.62 4.57 1.05 12.46 1.61

GibbsEM -4.23 -2.42 4.82 1.34 13.13 1.85

VB -7.80 -6.22 4.53 -2.35 18.40 -2.25

Gibbs -8.46 -7.53 6.93 -4.04 14.59 -3.83

GibbsEM -7.74 -6.19 4.62 -1.14 16.62 -0.97

Table 1: Source separation results (top) on a mixture of
guitar (“Matte Kudasai”) and drums (“Territory”) and
(bottom) on a mixture of flute (“Vandringar I Vilsen-
het”) and drums (“Moby Dick”)

same as the above. The values converge within 150 it-
erations of the EM algorithm which makes use of 5000
samples for the E-step. We present the spectromrams
of the sources estimated by the Gibbs-EM in Figure 4.
As expected, the variational EM algorithm converges
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Figure 4: The spectrograms of the original sources (top)
and the sources estimated by the Gibbs-EM algorithm
(bottom) in the second experiment.

to a set of hyperparameters that lead to a worse per-
formance, so those results are omitted. The results of
these source separation and denoising experiments can
be found at http://www.cmpe.boun.edu.tr/~dikmen/
igmc_report/ as audio files.

5 Conclusion

We modelled the variances of the time-frequency rep-
resentation coefficients of non-stationary audio signals
with inverse Gamma Markov chains to include the pos-
itive correlation among the variances at consecutive in-
dices. It is suitable to model these signals with horizon-
tal and vertical IGMCs, respectively.

Although inference is convenient in this model due to
conditional conjugacy, optimisation of the hyperparame-
ters that determine the coupling between the chain vari-
ables is essential. We performed extensive simulations
to deduce facts about the model and various inference
methods. Despite the fact that the Gibbs sampler needs
a high number of samples for the estimation, the best
model can be obtained using the Gibbs-EM algorithm.
The run time of the algorithm is generally several hours.
Sequential Monte Carlo performs as well as the Gibbs
sampler, but with less number of samples. One problem

with SMC methods is to adapt a propagation scheme
due to the offline nature of the problem as we handle.
Optimisation with variational Bayes is not consistent.
Although VB works very well and fast when it runs on
the “correct” parameters, the optimised hyperparam-
eters are not guaranteed to increase the performance,
because the optimisation of the variational lower bound
does not correspond to the optimisation of the true like-
lihood.
The reconstructions we get with this model still have
some artifacts even when all the hyperparameters are
optimised. This is because, with IGMCs we can cap-
ture the dependencies in one dimension. In most of the
audio signals, there is a correlation between the coeffi-
cients in both directions, although the correlation in one
direction may be more prominent. Moreover, the model
with IGMCs needs prior knowledge about the nature of
the signal, such as whether it is tonal or percussive, for
better performance.
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