
Sound amplification in a lined duct with flow: PIV
measurements
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An experimental investigation of the acoustic behavior of a liner in a rectangular channel with grazing
flow has been conducted. The liner is a locally reacting structure. When increasing the velocity
of the grazing flow the transmission coefficient increases at resonance frequency. The transmission
coefficient can become close to 1 and the liner produces acoustical energy instead of dissipating it. This
amplification of the sound wave is accompanied by an increase in the stationary pressure drop induced
by the liner. This effect is attributed to a modification of the flow induced by the acoustic wave. Thus,
the flow is measured using PIV imaging technique and a comparison of velocity maps with and without
sound excitation is performed. It is shown that the convection of large flow structures accompanies the
sound amplification phenomenon. Some evidence of an hydrodynamic instability are thus given.

1 Introduction

Lined ducts are widely used to reduce noise emission,
for example in turbofan engines. In the presence of
flow, acoustic propagation is difficult to predict due to
noise/flow interaction. This is especially true in the
vicinity of the lined wall where the flow is highly vortical.
Some analytical studies (based on linearized convected
wave equation with Myers boundary conditions for the
impedance) show the existence of many acoustic modes,
and of two hydrodynamic modes in the presence of flow,
one of which can be unstable [1]. Experimental demon-
stration of the existence of such instable modes has been
made by Brandes and Ronneberger [2], who observed
a large increase in acoustic transmission across a lined
part of a cylindrical duct. More recently, an equivalent
phenomenon was observed by Aurégan et al [3].
In the present paper, the flow above a lined wall of a
flow duct is investigated when such an increase in acous-
tic transmission is present. The experimental setup is
presented in section 2. The PIV experimental setup is
presented in section 3. Information on the POD post-
processing is also given. Acoustic measurements show-
ing a production of acoustic energy by the liner are then
presented in section 4 together with mean pressure drop.
Finally, results of the flow measurement above the liner
are presented in section 5. Velocity fields are presented
with or without acoustic excitation.

2 Experimental Setup

The experimental setup is presented in Fig 1. A rect-

Figure 1: Top view of the flow rig. Scales are different
in x and y-directions.

angular pipe of cross section 8cm x 3cm is fed by a fan.
A loudspeaker is mounted on the pipe to introduce an
acoustic wave. The cross section is then reduced via a
20cm long contraction. Then comes the test section that
has a rectangular cross section 8cm x 2cm and is 60cm
long. It is made of aluminum but has some glass win-
dows for optical access. One of the wall of the test sec-
tion is acoustically treated with a liner. The test section
and the lining material are shown in Fig. 2. The liner
is equivalent to the one used in Ref [3] and comes from

Figure 2: Top view of the test section. The cross
section is rectangular, of height h=2cm, and of width

8cm along the z-direction.

automotive industry (catalytic converters). It consists
of square ceramic resonators, side of which is E=1mm.
The resonators are separated by walls of thickness e=0.1
mm. The length of the resonators is H=8cm. This cor-
responds to a resonance frequency of 1kHz. Hence, the
acoustic transmission is expected to fall off at this fre-
quency. The total length of the wall that is treated with
the liner is L=7.5cm. Finally the rig is ended by an
anechoic terminaison.
An important parameter is the velocity of the flow. In
the test section, the mean central velocity is up to 108
ms−1, which corresponds to a maximal Mach number
M=0.3. Acoustic measurements (transmission) are per-
formed for the plane mode using the four microphones
shown in Fig. 2, using a swept sine excitation. A mean
pressure drop can also be measured using a differential
pressure gauge also shown in Fig. 2. The setup for the
flow measurement is presented in the next section.

3 PIV Setup and POD

The flow is measured with a 2D Particle Image Ve-
locimetry (2D PIV) technique [4]. The technique con-
sists in taking two images of particles seeded in the flow.
By correlating the two images one can deduce the dis-
placement of the particles, and then the particle velocity
by dividing the displacement by the time lag between
the two images. An advantage of this technique is that
it is not intrusive. It also makes it possible to obtain
a instantaneous velocity map over some region of the
flow. The measuring configuration for the present case
in shown in Fig. 3. The laser sheet is introduced per-
pendicularly to the liner, and the camera takes images
of particles in the PIV measurement area (see Fig. 3).
This area is typically 2.5cm long in the x-direction and
1.8cm long in the y-direction. It does not cover the
whole liner length, but the area can be moved along the
liner. The measuring area can also be moved closer to
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Figure 3: PIV Measurements Setup

the smooth wall facing the liner. The spatial resolution
is ∆ ∼0.15mm. Note that spurious reflexions of the laser
sheet on the walls means that the 3 to 4 first measured
points close to the walls can contain large errors. 1000
velocity instantaneous fields are taken for each flow con-
figuration at 1000 instants ti. No synchronisation has
been used when taking the images, and unfortunately
the instants are given with a precision of 1ms, which
is clearly not enough when compared to the frequency
1kHz encountered here. Hence, the time ti can be con-
sidered as unknown and completly random. We will use
the following notations: u(x, y, ti) is the instantaneous
velocity vector with components u and v along x and y-
directions. The time averaged velocity vector is U(x, y)
with components U and V . Finally, the velocity fluctu-
ation is u′(x, y, ti) = u(x, y, ti) − U(x, y) with compo-
nents u′ and v′. One can also consider the amplitude of
the fluctuations given by the rms value of u′ that we will
note urms with components urms and vrms. The x-axis
origin is taken at the beginning of the treated portion
of the duct, as shown in Fig. 2. The y-axis origin is
taken at the position of maximal mean velocity, which
is at the center of the channel. The lined wall is then
at y=0.01m and the smooth wall is at y=-0.01m. To
compare the flow in the vicinity of the lined and smooth
walls, a better vertical ordinate is the distance to the
wall w, that will be used instead of y when necessary.

To extract some useful information from the instan-
taneous velocity fields, use will be made of Proper Or-
thogonal Decomposition (POD). This decomposition al-
lows to obtain a projection of the flow on particularly
representative modes [5]. Contrary to a Fourier decom-
position where modes are known in advance the POD
provides ”empirical” modes for the particular set of ve-
locity fields under consideration. This POD is partic-
ularly useful when the flow is inhomogenous (ie when
structures are present). When this is not so, the POD
is equivalent to Fourier decomposition. The mean flow is
substracted from the data before calculating the modes,
thus the POD is performed on u′. The POD is:

u′(x,y, ti) =

Nt∑

j=1

aj(ti)Ψj(x,y) (1)

where Nt is the number of velocity fields. Here we will
take Nt=300 fields out of the 1000 available. ti is the
unknown time when the fields were taken. The real
number aj are time coefficients without dimension. The
modes Ψj(x, y) are vectors obtained by solving a Fred-
holm equation that will not be given here. Each mode

Ψj(x, y) is associated to its energy λj also provided by
the solution of the Fredholm equation. The modes are
usually sorted in descending value of λ. Hence, the first
mode is the most energetic.
The POD is particularly interesting when the dynamic
of the flow can be synthesized using a few modes. In
that case a reconstruction can be performed. For exam-
ple, suppose the first two modes represent an important
feature of the flow, a reconstructed field can be obtained
through:

u′
recons(x,y, ti) = a1(ti)Ψ1(x,y) + a2(ti)Ψ2(x,y)

(2)
Examples of PIV measurements together with POD post-
processing will be given in section 5.

4 Pressure/acoustic measurements

On each side of the treated section, the acoustic wave is
decomposed into complex incident and reflected compo-
nents, that is P+

1 and P−
1 upstream of the liner, and P+

2

and P−
2 downstream of the liner. A two microphones

measurement on each side of the liner gives access to
these quantities. One can thus calculate the acoustic
transmission T = P+

2 /P+
1 , and the two reflexion coeffi-

cients R1 = P−
1 /P+

1 and R2 = P−
2 /P+

2 . The acoustic
transmission |T | is given as a function of frequency in
Fig. 4 for several values of the Mach number M . With
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Figure 4: Acoustic transmission |T |.

no flow (M=0) the transmission is close to 0 for the reso-
nance frequency of the liner (around 1kHz), as expected.
When the Mach number increases, a hump is appearing
in the transmission for a frequency that increases with
the Mach number but keeps close to the resonance fre-
quency of the liner. At M=0.3, the transmission reaches
0.9 at 1.1kHz. The later value of the frequency corre-
sponds to an increase of the temperature from 293K to
306K at this Mach number. This hump in the transmis-
sion is unexpected, and a similar phenomenom has been
observed previously in Refs [2, 3]. In Ref [3], the trans-
mission can be to 3, for slightly different conditions.
Another quantity of interest is the acoustic energy flux
entering the liner, Ein, given by

Ein = (1 + M)2|P+
1 |2 + (1 − M)2|P−

2 |2 (3)

= (1 + M)2|P+
1 |2 + (1 − M)2|R2T |2|P+

1 |2 (4)
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The acoustic energy flux leaving the material is:

Eout = (1 + M)2|P+
2 |2 + (1 − M)2|P−

1 |2 (5)

= (1 + M)2|T |2|P+
1 |2 + (1 − M)2|R1|

2|P+
1 |2 (6)

Thus a normalized acoustic energy dissipation can be
calculated using the difference between these two fluxes,
and is given in Fig. 5. A striking feature appears at
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Figure 5: Acoustic energy dissipation by the liner.

M=0.3. The energy dissipation become negative at the
same frequency 1.1kHz for which there was a hump in
the acoustic transmission. This means that acoustic en-
ergy is indeed produced by the liner, and this is the
opposite of what is expected from the liner.
To complete these acoustic measurements, the mean
pressure drop across the liner has been measured at
M=0.3 with acoustic excitation at a fixed incident level
of 130dB, as well as without acoustic excitation. It
is given in Fig. 6. It is seen that an increase in the
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Figure 6: Mean pressure drop across the liner with or
without acoustic excitation at M=0.3.

mean pressure drop of about 25% is seen at 1.1kHz
when acoustic excitation is used. This shows that at
this frequency, a large part of the flow above the liner is
modified by the acoustic excitation.

5 Flow measurement (PIV)

To give an explanation to the large increase in acoustic
transmission observed above, the flow above the liner

is now investigated using 2D PIV as presented in sec-
tion 3. Of special interest is the comparison between the
flow obtained with (’Ac’) and without (’NoAc’) acous-
tic excitation, and between the flow close to the lined
wall and that close to the smooth (rigid) wall at a fixed
axial position x. In any case, the Mach number is fixed
at M=0.3, and the optional acoustic excitation has a
frequency of 1.1kHz, corresponding to that for which an
acoustic phenomenom has been observed in the previous
section.
First let us consider the velocity statistics. As an ex-
ample the profile of the rms value of the axial velocity,
urms, is given for several cases in Fig. 7, at two differ-
ent axial positions: x=0.002m (beginning of the treated
part of the duct), and x=0.07m (the end of the treated
part of the duct). At x=0.002m, we see no difference
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Figure 7: Profiles of the axial velocity fluctuations,
urms. w is the distance to the wall.

between the smooth and lined walls, with or without ex-
citation. Similar observations are done upon U , V , and
vrms (not shown). This means that at the entry of the
treated region, no phenomena has appeared yet, what-
ever the case. The profiles at x=0.07m for the smooth
wall are close to those at x=0.002m. It means that the
flow in the vicinity of the rigid wall at the end of the
treated region has not changed compared to the flow at
the entry of the region, even with acoustic excitation
present. In Fig. 7, only two profiles actually stand out,
these are the fluctuation profiles for the lined wall at
x=0.07m, at the exit of the treated region in the vicin-
ity of the lined wall. These fluctuations at the exit are
much bigger than at the entry. This is true with and
without excitation, yet the fluctuations are much larger
with excitation. This shows that the acoustic excitation
has a deep impact on the flow fluctuations above the
liner.

In the following, we try to establish a relation be-
tween instantaneaous features of the flow and the pre-
vious observations on first-order statistics. An example
of instantaneous axial velocity map is given in Fig. 8.
The field is in the vicinity of the upper (lined) wall and
at the end of the treated section (0.045m< x <0.07m).
It is particularly clear that a structure is present along
the lined wall. Such a large structure is not visible on
the bottom (rigid) wall.
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Figure 8: Example of instantaneouas axial velocity u′.
With acoustic excitation at 1.1kHz. M=0.3.

The presence of a structure makes a POD investi-
gation interesting. The first two modes of the POD
decomposition for the case with acoustic excitation are
shown in Figs. 9 and 10. These two modes gather 50%
of the fluctuating energy. Both modes show clearly
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Figure 9: First POD mode.
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Figure 10: Second POD mode.

a vortex with an axial offset between the two modes.
This means that the vortex is probably convecting. The
time coefficients in Eq. 1 vary quite arbitrarily since no
phase locking was used. Nevertheless, information can
be gained by plotting a phase diagram of a2 versus a1,
which is done in Fig. 11. In this figure, a velocity field
at time ti is represented by a dot, and we have Nt=300
dots. It is observed that the dots describe rather well
a circle shape. Hence we can write a1 = Rcos(φ) and
a2 = Rsin(φ), where φ is a phase angle. This phase
angle can be used to sort the Nt velocity fields by as-
cending value of φ or to make phase averages. To do this
we first define ten phase φk, k=1...10, corresponding to
the ten slices shown in Fig. 11. They are given by:

φ(k) = (k − 0.5)
2π

10
k = 1...10 (7)
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Figure 11: Phase diagram a2 / a1.

Second, we can average all the velocity fields falling in a
particular slice. Thus we define a phase-averaged fluc-
tuating velocity field by:

u′
phase(k) =

∑

i;(k−1) 2π

10
≤φ(i)<k 2π

10

u′(i) k = 1...10 (8)

We can do the same for any quantity that depends only
on the instant i (∈ [1 Nt]) of the velocity field. A phase
averaged time coefficient for mode 1 is given by

a1,phase(k) =
∑

i,(k−1) 2π

10
≤φ(i)<k 2π

10

a1(i) k = 1...10

(9)
A phase averaged time coefficient for mode 2, a2,phase,
is defined similarly. These two coefficients are plot-
ted versus the phase in Fig. 12. The curves describ-
ing these phase-averaged coefficients are offseted sine
curves, which is nothing but another way of represent-
ing the circle in Fig. 11. Hence, although no synchroni-
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Figure 12: Evolution of the phase averaged time
coefficients with the phase.

sation was used for the measurement, we are able using
the previous method to recover a periodicity in the ve-
locity fields. To summarize, we have defined 10 phase
angles φk and ten phase-averaged fluctuating velocity
fields. We have also 10 coefficients a1,phase and a2,phase

for the modes Ψ1 and Ψ2. This in particular allows us
to reconstruct a field with two modes. Eq. 2 has to be
replaced by:

u′
recons,phase(x, y, k) = a1,phase(k)Ψ1(x, y)

+ a2,phase(k)Ψ2(x, y) k = 1...10 (10)
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This is a phase-reconstructed fluctuating velocity using
the first two modes only, and is avaible for each of the
ten phases considered.

Figs. 13 and 14 show respectively the phase-averaged
and phase-reconstructed velocity vector field, both at
phase φ1. We see that these fields are quite simi-

Figure 13: Phase averaged velocity field at phase φ1.
The instantaneous velocity fields falling in slice φ1 of

Fig. 11 have been averaged to obtain this field.

Figure 14: Phase averaged reconstructed velocity field
at phase φ1 according to Eq. 10.

lar (the reconstructed field is much smoother) and rep-
resent a vortex. At the other phases φ2 ... φ10 (not
shown) the velocity field represent a vortex at other po-
sitions. Hence, a major future of the velocity fluctuation
is a vortex convected along the liner. A spatial Fourier
transform show that the associated axial wavelength is
about λ ∼0.04m. A full period corresponds to 2 conter-
rotating vortices and only about one half of this wave-
length is visible in Figs 13-14. Based on the wavelength
and the frequency of 1.1kHz, the convection speed of
the vortex is uconv = λf=44ms−1. It is interesting to
plot the evolution of the velocity at a fixed point of
the domain. This point is taken to be at x=0.07m and
w=0.0012m, and is shown by a black cross in Fig. 14.
Both the phase-averaged and reconstructed fluctuating
axial velocity are given in Fig. 15 as a function of the
phase. For more clarity, the fields have been duplicated,
and the phase goes up to 6π. The phase-averaged veloc-
ity has a sine shape. The reconstructed velocity is very
close to it, which shows that the first two POD modes
are sufficient to describe the phase-averaged dynamics
of the flow. A striking fact in Fig. 15 is the magnitude
of the phase-averaged velocity fluctuation, that reaches
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Figure 15: Variation of the phase-averaged and
reconstructed axial velocity at the point located at

x=0.07m, w=0.0012m.

more than 20ms−1. The peak velocity for the transverse
velocity (not shown) is about 10ms−1. Thus the effect
of the acoustic excitation on the flow field is seen to be
quite important.

6 Conclusion

At sufficiently high Mach numbers, a liner consisting of
quarter-wavelength resonators can amplify an incident
sound wave at its resonance frequency. This acoustic
behaviour has been related to the flow field above the
liner. A phase-averaged velocity shows convected vor-
tex along the liner, with a periodic velocity at a fixed
point. This supports the hypothesis of an instable hy-
drodynamic mode.
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