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A complete description of the vibro-acoustical behavior of a poroelastic material requires the knowledge of both geometrical 
quantities, related to the structure of the fluid-filled pores to account the sound propagation within them, and mechanical 
parameters (i.e. Young’s Modulus, Poisson ratio and loss factor) in order to model the wave propagation through the elastic 
structure constituting its skeleton. Because the non-linear nature of poroelastic media, these mechanical properties are observed
to depend on static preload and dynamic strain applied to them. 

In the present work well established quasi-static methods, based on the measurement of mechanical impedance and the use of 
adequate polynomial relations, have been used to determine the dependence of the mechanical properties on the applied 
deformations. Furthermore, tests have been also carried out in a vacuum chamber in order to evaluate the real contribution of 
the filling fluid on the total vibro-acoustical response of the material. 

1 Introduction

The acoustic behavior of the poroelastic materials is 
completely described by Biot poroelasticity theory [1]. In 
order to model sound propagation through the elastic frame 
of poroelastic material, Biot model requires five geometric 
parameters (airflow resistivity, open porosity, tortuosity, 
viscous and thermal characteristic lengths); moreover it also 
requires three elastic properties of the skeleton, Young’s 

modulus (E), Poisson ratio ( ) and loss factor ( ). Various 
static, quasi-static and dynamic methods for determining 
these elastic properties were proposed in the literature. In 
this paper two quasi-static methods are investigated [2,3]. 
The effect of dynamic and static deformations is 
investigated for both methods; furthermore the effect of air 
inside the porous material on the elastic properties is also 
evaluated by repeating mechanical impedance 
measurements in vacuum conditions. 

2 Description of the measurement   
methods

In this section, two quasi-static methods for the 
determination of mechanical properties of porous materials 
are described in detail.  The mechanical properties of 
porous materials are complex and frequency dependent in 
nature because of viscosity of the frame. Therefore dynamic 
tests should be  carried out to evaluate these properties. 
However, even when the dynamic values of elastic 
parameters are higher than its static value, it has been 
shown from simulations and measurements that the 
constant value of elastic properties measured at low 
frequency provides reliable results [2]. 

                    

2.1 Method A: Method based on the 
measurement of mechanical stiffness 
and lateral deformation 

This method was proposed by Marietz et al. [2]; the scheme 
of the set-up is shown in Figure 1. 

The experimental set up consists of a cylindrical porous 
sample sandwiched between two rigid plates. The lower 
plate is excited by electrodynamics shaker and upper plate 
is rigidly fixed. During the test, the lower plate is excited 
and, because of this, the sample gets deformed along its 

diameter. This effect is also known as “bulge effect”. This 
lateral deformation D2 and the vertical deformation D1 are 
measured by a laser vibrometer. Also the force transmitted, 
F,  through the sample is measured by force transducer. 
Using these quantities it is possible to calculate transfer 
function and mechanical impedance, which are complex 
and frequency dependent, as follows: 
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Fig. 1 Measurement setup for quasi-static method 

From these quantities, their real parts (named T and K
respectively) and finite element simulation of static case of 
porous sample can be used to calculate mechanical 
properties. Simulations are executed for an arbitrary value 
of Young’s modulus and loss factor with varying Poisson 
ratio. Therefore one can obtain graph of simulated function 
T  as a function of the Poisson ratio. 

Taking this simulated curve as an abacus, it is possible to: 
I] calculate the Poisson ratio of the material by 

using minimizing experimental and simulated 
transfer function T.

II] now fixing the measured value of Poisson ratio in 
FEM model subsequent variation in Young’s 
modulus are carried out. This gives the simulation 
curve for compression stiffness K.

III] by minimizing experimental and compression 
stiffness values, it is possible to calculate the 
Young’s modulus of the porous sample.  

IV] lastly the loss factor is calculated from measured 

K( ) as follows: 
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2.2 Method B: Method based on the 
measurement of mechanical stiffness 
of two cylindrical samples of different 
diameters

Langlois et al. [3] have proposed a method for determining  
mechanical properties based on the measure of the 
mechanical stiffness of two disc shaped samples of 
different diameters and the use of polynomial relations for 
simultaneously calculating Young’s modulus, Poisson 
ration and loss factor. The measurement setup is completely 
analogous to setup shown in Figure 1.  
The compression test is performed on two samples with 
different shape factors. The shape factor is defined as the 
half the radius to thickness [R/2L].  In this configuration the 
sample will try to bulge as it is compressed in between rigid 
plates. For a long column of porous sample (typically s <
0.025), the static compression stiffness will not be affected 
by Poisson’s effect or the boundary conditions. In such a 
case the column can be characterized by Young’s modulus 
given by 

L
E K

A
 (3) 

where A is the cross-sectional area of the column and L is 
the thickness of the sample. In case of high shape factors, 
the Poisson’s effect and boundary conditions produce 
lateral deformation and they can not be neglected. In this 
case the young's modulus is rewritten as:  
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where the term Ps( ) is introduced as a correction factor to 
obtain true value of Young’s modulus from apparent value 
of Young’s modulus. 

For the determination of the mechanical properties, FEM 
simulations are used. The poroelastic sample are modeled 
as solid material using elasticity theory. These FEM 
simulations are executed for a fixed value of Young’s 
modulus with varying values of shape factor and Poisson 
ratio. The ranges of Poisson ratio are 0 to 0.48 and shape 
factor from 0.1 to 2.1. These simulated values are related by 
polynomial curves (order 10) in s.  Once these polynomial 
curves are ready, then it is possible to calculate the 
mechanical properties using following procedure. 

I] first measurement of compression stiffness (K1

and K2) is carried out on two samples having 

different shape factors (S1 and S2).
II] then polynomial curves (order 8) are fitted for 

these samples with two shape factors given by  
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III] since these two samples are cut from same piece 
of material, mechanical properties are same for 
both of them and so it is possible to calculate 
Young’s modulus and Poisson ratio with 
equations 5 using  E1-E2=0.

IV] the loss factor is calculated from the mechanical 
impedance by using equation 2.  

3 Measurement Setup

The measurement test rig is shown in Figure 2. It consists 
of two disc shaped metallic plates. The lower plate is fixed 
on an electrodynamic shaker which excites the plate with 
sine-sweep in the frequency range 10-80 Hz. The 
measurements were carried out below any resonance of the 
system. An accelerometer is mounted on lower plate. The 
upper plate is mounted on a rigid structure through a static 
force transducer. The porous sample is placed in between 
these two plates with double-sided adhesive tape on lower 
plate. The sample is slightly compressed, by using a crank 
system, and strain applied is very low so that material 
behavior should maintain linear. The upper plate is coated 
with sandpaper so that the sample can not move sidewise 
during the tests. The measurements can also be repeated in 
vacuum to evaluate the effect of air inside the sample. The 
measurement set-up consists of following instruments: 

Shaker B&K Type 4809 

Power Amplifier B&K Type 2716C 

Force Transducer PCB 288D01 

Accelerometer B&K Type 4501 

Signal Conditioner B&K Nexus e MESA MUX10A 

Lase Vibrometer Polytech OFV3001 

PC equipped with Sound Card ESI Wami Rack 

192X 

Edwards RV12 Vacuum pump.  

LabVIEW® and Matlab® routines have been developed for 
signal acquisition and post-processing. 

To calibrate the system and minimize the uncertainties from 
the transfer functions of the tested sample calibration 
procedure proposed by Marietz et al. [2] is used. In this 
case a spring is tested on the system in the frequency range 
of interest and stiffness of the spring is assumed to be 
constant in the frequency range and equal to its static value 
K0. Then it is possible to define a calibration function Hc

(complex and function of the frequency) and the calibrated 
compression stiffness Kc in the following way: 
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Fig. 2  Test Rig: 1-shaker, 2-accelerometer, 3-force 
transducer, 4-system for compression, 5-laser 
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4 Results and Discussions

In this paragraph, experimental results on three poroelastic 
materials are presented and discussed. The effect of static 
compression as well as effect of the variation in the level of 
dynamic excitation is investigated.  The description of the 
tested materials is summarized in the Table 1. Two samples 
from each material were cut with diameters 45 mm and 30 
mm, named S1 and S2 for each sample respectively. 

Materials  Thickness 

[mm] 

Density 

[Kg/m3]

Flow

Resistivity  

[Ns/m4]

Porosity

[-] 

Melamine

[M30]

28 10 10800 0.99 

PU-Foam 

[PU20]

20 30 30372 0.99 

Rockwool

[RW20]

20 110 77290 0.99 

Table 1 - Description of the tested materials 

4.1 Comparison between the two 
measurement Techniques 

Table 2 shows values of compression stiffness K1 and K2

and T for samples S1 and S2, calculated as the average value 

between 20 and 40 Hz. In the same table the values of the 

Young's modulus (E), Poisson ratio ( ) and the damping 

loss factor ( ) are given calculated from the methods A and 

B. It has to be underlined that variations lower that 5% for 

K1 and K2 and not higher than 2% for T have been found 

during tests. 

   Method A Method B

Material K1

[N/m]

K2

[N/m]

T

[-]

E

[Pa] [-]

E

[Pa] [-] [-]

M30 6816 3345 0.196 114079 0.27 106343 0.48 0.07 

PU20 15532 6353 0.330 169374 0.33 154309 0.36 0.17 

RW20 20411 9258 0.008 256787 0.01 238400 0.09 0.15 

Table 2 - Comparison between the two methods 

From the table it is possible to observe that the values 

Young’s modulus from both methods are consistent. There 

is some variation in values of Poisson ratio obtained from 

two methods mainly for material M30. Differences can be 

explained as follows. Method B assumes that the 

measurement of compression stiffness for two samples of 

same material is carried out in same mounting condition. 

Moreover it is assumed that poroelastic materials are 

perfectly elastic, homogenous and isotropic in nature.  

Consequently viscoelasticity and non homogeneity of the 

same material samples, measurement uncertainties (mainly 

due to the mounting of the specimens) and also non 

parallelism between the two rigid plates (found in the 

equipment) could lead to variations in the compression 

stiffness, which are justifiable only by means of 

overestimated values of the Poisson ratio.

As an example for sample S2 of all materials the expected 

compression stiffness was simulated with FEM model using 

Young’s modulus and Poisson ratio from Method A; the 

results are reported in Table 3 with the measured values 

(with 5% relative error in K2).

Materials 
Measured (K2)

[N/m]

Expected

from FEM [N/m]

M30 3345 ± 167 3008 

PU20 6353 ± 318 6548 

RW20 9258 ± 463 9073 

Table 3 - Comparison between the measured 
compression stiffness and expected for the sample S2

From the analysis of results in the previous table, it is found 

that even if the values of compression stiffness are 

comparable with the results from FEM model, the 

polynomial relations could lead to large errors in the 

determination of the mechanical properties. 

4.2 Effect of the static and dynamic 
amplitudes 

In the present paragraph the values of mechanical 

parameters obtained from varying the level of excitation of 

the shaker (dynamic deformation) and the initial 

deformation (static deformation) are reported. At first the 

sample was mounted with some static pre-compression so 

that it will not slide during the measurement. After that, the 

compression was increased with linear step 0.1 mm.  

Regarding dynamic deformations, they have been used rms
values of the displacement of lower plate equal to 0.06 mm, 

0.08 mm, 0.12 mm, 0.17 mm e 0.24 mm. 

Here it is interesting to underline that the applied 

deformations on all materials were lower than 5%; such 

condition should ensure linear behavior of the material [4].   

Because of limitations in method B, it is not possible to 

calculate mechanical parameters for all the tested materials 

for both static and dynamic loads. Thus results obtained by 

means methods A will be presented. 

In figures 3-5, the graphs for the mechanical parameter for 

melamine foam are shown.  

The average values of all the elastic parameters, calculated 

by varying both static and dynamic deformations, are listed 

in tables from 4 to 6. Also the difference between the 

maximum and minimum values is also given for all 

materials.  
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From graphs, it can be observed that: 

Young's modulus increases with increase in the static 

load and diminishes when the dynamic deformation 

increases. Similar results have been found for materials 

PU20 and RW20. 

Poisson ratio is practically constant for all the values of 

static and dynamic deformations. Similar results have 

been found for materials PU20 and RW20. 

The damping does not follow a regular trend for all the 

tested materials. 

Young Modulus [Pa]
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Fig. 5 Graph for Young’s modulus as a function of the  

dynamic deformation 

Poisson ratio [-]
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Fig. 6 Graph for Poisson ratio as a function of the  

dynamic deformation 

Loss factor [-]
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Fig. 7 Graph for loss factor as a function of the  

dynamic deformation 

Parameters
Parameter 

Values

Difference

(Max- Min) 

Values

E [Pa] 122999 23179 

 0.26 0.01 

0.09 0.01 

Table 4 - Average Material Properties for M30 

Parameters
Parameter 

Values

Difference

(Max- Min) 

Values

E [Pa] 
178004 61488 

0.34 0.17 

0.07 0.05 

Table 5 - Average Material Properties for PU20 

Parameters
Parameter 

Values

Difference

(Max- Min) 

Values

E [Pa] 
294293 96139 

0.01 0.002 

0.15 0.01 

Table 6 - Average Material Properties for RW20 

The analysis of data shown in previous tables allows to 

underline the strong dependence of Young modulus from 

the deformations (variations around 30% for materials can 

be found for materials PU20 and RW20). Regarding the 

Poisson ratio and the loss factor, material PU20 exhibits 

variable behavior. On the contrary the effect of 

deformations on  and  can be neglected for materials 

M30 and RW20. 

5 Effect of Vacuum on compression 
stiffness of the materials 

In this section the effect of vacuum on melamine foam is 
discussed. Tests were carried out at different pressures from 
3 mbar up to the atmospheric pressure.  
In vacuum chamber, pressure is increased from 3 mbar to 
the atmospheric pressure.  

Because of the geometry of the vacuum system, it is 

important to underline that tests of lateral deformation by 

means of laser vibrometry can not be carried out at the 

present. For this reason only compression stiffness and loss 

factor have been measured and compared. 
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The results for the compression stiffness of sample S1 are 

shown in the Figure 8. In Figure 9 the same analysis is 

reported for loss factor. 
The uncertainties in the measurements of compression 
stiffness and loss factor were found lower than 200 [N/m] 
and 0.01 respectively. 

Compression Stiffness Vs Pressure
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Fig. 8 Effect of  Pressure on Compression Stiffness 
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Fig. 9 Effect of  Pressure on Loss factor 

From these graphs it can be noticed that there is no 

significant effect of vacuum on compression stiffness and 

loss factor.

6 Concluding remarks 

In the present paper two different quasi-static methods for 

the determination of the mechanical properties of 

poroelastic materials have been investigated. The analysis 

has pointed out some limitations of the measurement test-

rig, mainly related to the test procedure of the two samples 

method. Among the possible causes, the non homogeneity 

of the specimens of the same materials has been  taken into 

account.

Furthermore, tests by means of the method based on 

mechanical impedance and lateral deformation 

measurements have been carried out by varying the 

excitation level from the shaker and the static initial 

preload. The analysis has permitted to notice that the effect 

of  such deformations on the mechanical properties is not 

negligible and  it could lead to variations of around 30% for 

Young modulus. 

Future investigations of the proposed research will be 

devoted to the enhancement of the measurement device. In 

particular measurements will be repeated by using a static 

force transducer in order to control the correct positioning 

of samples and ensure the same static pre-compression 

when two different samples of the same material are tested. 

Moreover the system will be modified in order to 

investigate the vacuum effect on the intrinsic mechanical 

properties. 

Finally, in order to overcome limitations due to the 

approximation of  the test sample as a linear elastic solid, 

FEM viscoelastic models will be developed for taking into 

account the effect of deformations. 
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