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We present an Ocean Acoustic Tomography (OAT) inversion in a shallow water environment. The idea is
to determine the sound spreed profile ¢(z), z is depth, knowing the acoustic pressures caused by a multiple
frequencies source and collected by a sparse receiver array. The variational approach minimizes a cost
function which measures the adequacy between the measurements and their forward model equivalent.
This method introduces also a regularization term in the form (c(z) — ¢y(2))TB71(e(2) — ep(2)), which
supposes that c(z) follows an a priori normal law. To circumvent the problem of estimating B~!, we
propose to model the celerity vectors by a probabilistic PCA. In contrast to the methods which use PCA
as a regularization method and filter the useful information, we take a sufficient number of axes which
allow the modelization of useful information and filter only the noise. The probabilistic PCA introduces
a reduced number of non correlated latent variables  which act as new control parameters introduced in
the cost function. This new regularization term, expressed as n”n, reduces the optimization computation

time.
obtained when performing twin experiments.

1 Introduction

The use of the variational method in both geoacoustic
and OAT inversions is recent [1, 2]. In the following we
use for OAT inversion a cost function which introduces
a background term in the form (c(z) — cy(z))" B2
(c(2) — ep(2)), where c(z) is the sound speed profile.
This term corresponds to an a priori information on
the physical parameters, which suppose that they are
normally distributed. Usually the estimation of B~! re-
quires a data subset statistically representative of the
problem. Due to the high dimensionality of the vectors
c(z) and the strong correlation between their compo-
nents it becomes difficult to estimate the matrix B~1.
We propose to model ¢(z) using the probabilistic Princi-
pal Component Analysis (PCA) [3]. This model assumes
that ¢(z) is made of two terms: the first is normally
distributed in a linear subspace of reduced dimension-
ality, the remaining term being an isotropic normally
distributed noise. The linear subspace is generated by
the first principal components of the covariance empir-
ical matrix of the data. The component of the data
projections on the linear subspace are non correlated,
zero mean and normally distributed. After normaliza-
tion the components constitute the latent variables of
the model and can be taken as the new control vari-
ables of an adjoint-based optimization method. Thus
the variational minimization of the cost function acts
on a reduced number of non correlated latent variables.
The paper is organized as follows. Section 2 reviews the
forward model based on the width angle PE (WAPE)
and the non local boundary conditions (NLBC), it
presents the usual cost function with its background
term. Section 3 introduces the probabilistic PCA ap-
proach and gives a complete methodology to minimizes
the cost function with respect to the latent variables.
Section 4 introduces an actual experiment in geoacous-
tic called the Yellow Shark experiment (YS). Section 5
presents the performances obtained when applying the
variational PCA inversion to the Yellow Shark experi-
ment.
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In the following we apply the probabilistic PCA to an OAT problem, and present the results

2 Adjoint-Based Optimization

Let G ¢ be a forward model which represents the predic-
tion of acoustic propagation in an oceanic environment:

Gf(c(z)) = ¢(T= Z), (1)

where f indicate frequency of acoustic signal source, ¢(z)
is the sound speed profile in the water column (control
parameters). The field ¢(r, z) therein is related to the
complex pressure p(r, z) according to

¥(r, z) exp(ikor)
ko’l”

; (2)

p(r, 2)

where ko = 27 f/cg is a reference wave number.

Our forward model Gy is based on the Wide-Angle PE
(WAPE) due to Claerbout [4], an analytical Thomson’s
source term [5], a Direchlet boundary condition at the
surface and a boundary condition at the water-bottom
interface (z = z) called Non Local Boundary Condition
(NLBC) due to Yevick and Thomson [6]. For a stratified
medium with varying density p(z) and absorption loss
a(z) the system can be described as follows:

0% L KEN? — 1)y

. o
2iko (1+ (W2 - 1)) 22 4 b
-1

taig PP e = 0
¥(0,2) = S(2),
¢(r,0) =0,
NLBC [£ —iB] ¢(r + Ar,z) =

i85 gL (K + 1= j)Ar ),

(3)
where N (z) = n(z)[1 + ia(z)] and n(z) = c¢o/c(z) the
refraction index. The interval 0 — r+ Ar is divided into
K +1 intervals of width Ar (r+ Ar = (K +1)Ar). The
NLBC transforms the PE problem having a transverse
radiation condition at infinity, into an equivalent one in
a bounded domain, with the convolution coefficients g; ;

and \/

where 12 = 4i/koAr, and the subscripts w and b in-
dicate the water column and bottom, respectively. For
further details of the NLBC derivation including alge-
braic expressions for the coefficients g; ; see [6] and [2].
In OAT inversion problem, we seek to determine the
sound speed profile ¢(z) knowing the acoustic pressures

WE — (1 +32) + 2

Pw
= —k
b 0 1+ %I/2

Pb

; (4)



caused by a multiple frequencies source (f;, [ =1, ..., L)
and collected by a sparse receiver array. The variational
formulation of this problem is to introduce a cost func-
tion that we write:

L
J(c(2)) = % > Joule(2)) + Jy(e(2)), (5)
=1

where J, ;(c(2)) is a likelihood term and Jy(c(2)) is the
background term. The parameter T is a coefficient. It
must be chosen so as to achieve a better balance between
the likelihood term Ele Jo,i and the background term
Jp. Thereafter, we will talk about the two components
of the cost function (5).

Likelihood: The quantity J,;(c(z)) is a likelihood
term witch quantify the mismatch between the measure-
ments (acoustic signals s;(t), j =1,..., N) across an N-
element vertical array at the frequencies f;, [ =1,..., L
and the predicted (replica) field vector i, = Gy, (c(2)).
In this paper we have chosen a likelihood term, used
in a meta-heuristic inversion method by Hermand and
Gerstoft [7], and that we write

YR,
1/)lT W

where T is the Hermitian transpose operator, tr is the
trace operator, R, are the estimated spatial correlation
matrices at the frequencies f;, [ =1, ..., L and 1/)le1/11 is
the linear Bartlett processor. Matrices f{l are computed
using the acoustic signals s;(t) [7].

The gradient of J,;(c(z)) with respect of the parame-
ters ¢(z) is computed by the adjoint method. We write
Joi(c(2)) = Jo1(Gp(c(2))) and the gradient V. J,; =
G%,Vy o, where the linear operator Gy, = agcfl is the
so-called tangent linear model and G7 represents the
adjoint model. In the experiment presented in section
5 we implemented the adjoint-model by using the semi-
automatic adjoint code generator YAO [8]. For further
details see [1] and [2].

Jou(e(z)) = trRy — , (6)

Background: The background term in (7) is the usual
expression used for variational data assimilation in me-
teorology and oceanography [9, 10, 11]:

To(c(2)) = (ez) = u(2)) B el2) —en(2))  (7)
which is based on probabilistic formalism. This term
corresponds to an a priori probability on the physical
parameters that we assume to follow a normal distri-
bution N (cp, B), ¢ is the background and B is the
variance-covariance matrix. Due to the high dimension-
ality of the vectors c(z) and the strong correlation be-
tween their components it becomes difficult to estimate
the matrix B~'. A more adequate approach for the
minimization process consists in performing a transfor-
mation of the parameters into non correlated ones (or
almost non correlated). Such transformations are used
in meteorology and oceanography: in [9, 10| the B'/?
transformation is computed by using a recursive filter, or
in [11] an empirical decomposition introducing a physic
knowledge is performed. The computation (or the ap-
proximation) of the non correlated parameter vector
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u = B7/2(c(2) — ¢y(2)) allows to rewrite the cost func-
tion (5) which becomes J(u) %Ele Jou(u) + 2uTu.
This expression avoids calculating the inverse of matrix
B, and provides a better preconditioning for the min-
imization process. Another transformation consists in
using the probabilistic PCA model.

3 Probabilistic PCA

Consider a data set A made of sound speed profiles ¢
evaluated at M points of the space discretization ac-
cording to depth z. We denote by c; the mean vector of
A. The Probabilistic PCA model [3, 12] allows a prob-
abilistic interpretation of A. It introduces an explicit
latent variable n € R? (¢ < M) with a normal prior
distribution A (0,I;) and assumes that the conditional
vector parameter ¢/7 is normally distributed with mean
W1 + i and isotropic covariance matrix x2Iy (M x M),
where W is a (M x ¢) matrix of range ¢ and p is a vector
in RM,

The columns of W span a linear subspace E4 in RM
of dimension ¢ and Wn + p represents the associated
affine linear variety, which contains the vector p. Under
these conditions, the profile ¢ is normally distributed
with mean vector p and variance-covariance matrix:

B=WW7 4+ £, (8)
Thus, n appears as a latent variable and c is a linear
transformation of n plus an additive normal noise ¢,

c=Wn+u+e, (9)
where & — N(0, k*I).

For a given value of ¢, the parameters of probabilistic
PCA are the matrix W, 2 and u. These parameters
will be estimated by maximizing the likelihood of A. Tt
can be shown [3, 12] that the optimal solution u is the
mean c; of the data set A and W = U(L — x%I,)'/?R
where U = (uy,uy, ..., uy) is made of the first ¢ eigen-
vectors of the empirical variance-covariance matrix of A.
L is a diagonal matrix (¢ x ¢), whose elements are the
corresponding eigenvalues A; and R a rotation matrix
of E4. This expression can be simplified by choosing
R =I,. Finally the determination of x? gives:

1 M
2= >N (10)
K i
M-—q i=q+1
The sum Zij\iqﬂ A; represents the residual variance of

the data not taken into account by the ¢ first principal
axes. Therefore, the x? is the average of the residual
variance of the (M — ¢) remaining principal axes.

Thus, = Wn represents the element of E,
whose  coordinates  using  (uj,us,..,u,)  are
(VA1 = B2, VA2 — K202, ooy \/Aq — K27)), the variance
of the i-th component (1 <i < q) equals \; — k2. This
model assumes that the variance for the remaining
principal axes (i > ¢) is constant and equal to x2.

Modeling A by a probabilistic PCA needs to take care
when dealing with the choice of the value of ¢: the resid-
ual variance must be “low” enough in order to ensure
that the model captures all the physical properties, and
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the variances on the other principal axes (i > ¢) being
"isotropic" enough. Formula (10) shows that x2 can be
negligible in the case of OAT inversion where M = 113
and ¢ < 10, x? will be omitted in the following.

Taking into account this approximation, the probabilis-
tic PCA assumes that a profile c is generated by:

c=Wn+c, = ULY? + ¢, (11)

where 7 is the latent variable associated to ¢, and which
is normally distributed (n — N(0,1,)).
The cost function (5) becomes

J(c) =J(Wn+cp)

12
= % Zlel Jo,l(wn + Cb) + 77T777 ( )

According to the latent variable n the cost function be-
comes

L
T) = > Joaln) + ", (13)
=1

which has to be minimized with respect to the latent
variables n;, it =1, ..., q.

4 The Yellow Shark (YS) experi-
ment

This section presents a twin experiment based on real
data to retrieve the control variable profiles ¢ using the
probabilistic PCA approach.

The data were collected during the Yellow Shark (YS)
experiment |7, 13]. It was carried out in the south of
Elba island in the Mediterranean sea during the summer
of 1994 and collected a series of 181 sound speed profiles
cover 9km. The distance between two profiles was 50 m.
For each profile, measurements are made every meter,
giving rise to a vector of varying dimension (between 113
and 116) depending on the depth of the water column.
Because of the assumption of a stratified medium and
that the probabilistic PCA need to project vectors of the
same size, only the 113 first measurements have been
considered here (M=113). For more details about the
Yellow Shark data one can refer to [7, 13].

As it is shown in Fig. 1, the profiles are very similar
(less than 5m/s variability), except for a small interval
around 20m depth, corresponding to the thermocline
area.

The profiles ¢ obtained during the YS experiment rep-
resent the behavior of the sound speed profile during
the period of the experiment and constitute the data
set A. The probabilistic PCA gives a model of this be-
havior, Fig. 2 represents the Cumulative Percentage of
Total Variation (CPTV) relative with total energy, for
each of first 15 PCA axes. With ¢ = 2 axes the CPTV
is approximately 76%, whereas with ¢ = 4 axes it is
more than 90%, it reaches 96% (resp. 98%) for ¢ = 7
(resp. ¢ = 10) axes. Taking into account the remark
about the choice of q given in the preceding section and
Fig. 2 it is clear that ¢ = 7 and ¢ = 10 could realize a
good compromise. Twin experiments, using the proba-
bilistic PCA and based on variational inversion, will be
presented in the following section.
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Figure 1: All YS sound speed profiles (blue) and the ensemble
average (cyan). The sediment layer and bottom geoacoustic
properties are supposed known.
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Figure 2: The energy of first 15 axes. The first ten axes
concentrate almost 98% of total energy.



5 Inversion results

First the mean profile vector of the YS data (c;) was
computed and c* the farthest profile from ¢; , using the
Euclidian distance, was selected. In the twin experi-
ments ¢, will be the initial background term used during
the minimization and c* the profile to be retrieved.
The YS experiments are used here as a realistic test case.
A multiple frequencies source was placed at z; = 69.2m
depth; the water depth was z; = 113.1m. The trans-
mitted signal was received on a vertical array (VRA) of
32 hydrophones, 2m spaced, from 37.2 to 99.2m depth.
The acoustic signals s;(t), j = 1, ..., 32 are generated ac-
cordingly with the WAPE acoustic model G, (c*), using
seven different source frequencies {200, 250, 315, 400,
500, 630, 800} Hz and a VRA at a range of 1km. The
sediment layer and the bottom are represented by the
geoacoustic properties proposed in |7, 13].

Before computing the matrices Rl, [=1,..,7, that we
used to determine the likelihood term (6), we added a
normally distributed noise of amplitude v = 0.05 to the
acoustic signals

si(t) =s;(t)+e(t), 5=1,..

where e(t) — N(0,v?).

We took the background cy as initial profile for the mini-
mization. Note that it corresponds to the latent variable
1n = 0. The choice of the parameter T of the cost func-
tion (13) has been done by the "L-Curve" method [14].
The twin experiments are performed using both 7 and 10
PCA axes. In both experiments, the probabilistic model
is in the best conditions, indeed, x? ~ 0 and the vari-
ances are virtually constant in all directions truncated
by the PCA, especially for 10 axes.

The Fig. 3 illustrates the true centred profile (solid
line) and both estimated centred profiles that have been
found: the estimated profile using 7 axes (dotted) and
the estimated one using 10 axes (dashed).

32 (14)

0

201 b
40- 8
E
£ 60r b
Q
(7]
o
80 J
cz
true
100
- CZ10pca
e cz7pca
120 I I I I I I
-0.5 0 0.5 1 1.5 2 25 3 3.5

sound speed (m/s)

Figure 3: OAT results using probabilistic PCA approach.
Starting with the background centred profile (which corresponds
to zero) the true and both estimated centred profiles are shown.

The true centred profile is indicated in solid line blue (cz¢rue),
the estimated using 7 PCA axes is indicated in dotted black
(cz7pca) and the estimated using 10 PCA axes is indicated in

dashed red (cziopca)-

We note that in the area before and around the thermo-
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cline (approximately 30 m depth) the inversion result is
much better with 10 axes that with 7. Between 30 and
80m depth results are somewhat similar with a small
advantage for 10 axes. After 80 m advantage east side 7
axes. One can say that overall the result is better when
we take 10 axes compared to 7.

This can be explained by the fact that profiles recon-
stitution becomes better when increasing the PCA axes
number. But from another point of view, the choice
of the number ¢ of the PCA axes generates a family
of sound speed profile, which are increasingly rich with
the value of q. We can consider the number q as a mea-
surement of the degree of freedom of the corresponding
generated family of sound speed. Thus, the risk that the
minimizing process retrieves the noise, that we added to
the acoustic signals, is more important for g — 10 than
for ¢ = 7. This risk was avoided here by the introduc-
tion of the background term (7) and the right choice of
the parameter T'.

6 Conclusion

In this paper we presented a variational approach to deal
with an Ocean Acoustic Tomography (OAT) in shallow
water inversion. This approach minimize a cost func-
tion, which measure the adequacy between the measure-
ments and their forward model equivalence. We pro-
pose to add a background regularization term to this
cost function, this suppose that the sound speed pro-
file has an a priori normal distribution which depends
on a variance-covariance matrix B. To deal with this
regularization term in the cost function, we propose to
model the sound speed profile by the probabilistic PCA
model. We showed that this model could represent eas-
ily this regularization term and reduce significantly the
number of the control parameters. We showed, in the
context of a real data and a twin experiment with an
added noise, that the variational inversion applied to
a cost function with a background regularization term
gives good results.
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