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In this work we extend our research on nonmatching finite element grids, as used in the analysis of coupled
mechanical-acoustic systems, from standard (bi-)linear grids to higher order Lagrangian grids. In practical
applications, like the simulation of thin membranes or the computation of the acoustic field in a large
homogeneous domain, the use of higher order finite elements is often advantageous. To demonstrate the
practical applicability we investigate the computation of electrodynamic loudspeakers.
To keep the number of unknowns as low as possible the discretization should be chosen as coarse as possible
without becoming susceptible to numerical dispersion. Due to the same reason it is also desirable to use
a uniform discretization and to be able to adjust the approximation order.
To gain more flexibility, we introduce a nonmatching interface between the subdomains and discretize
them independently, both in space and approximation order. Our enhanced scheme applies the mortar
finite element method to coupled mechanical-acoustic field problems.

1 Introduction

In the present paper we conduct numerical studies con-
cerning the practical applicability of the mortar FEM
for mechanical-acoustic coupling in an electrodynamic
loudspeaker.

Electrodynamic loudspeakers like the one depicted
in Fig. 1 can be encountered in many everyday devices.
Among others one should especially mention HiFi sys-
tems for home entertainment or cars. Manufacturers
of such systems face the challenge to design their ac-
tuators, e.g. according to changing geometries or ma-
terial properties, in the interior of cars. To avoid the
costly process of building prototypes, conducting mea-
surements and redesigning, the use of CAE tools is of
major importance for the reduction of costs during the
development phase of a new product.
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Figure 1: Schematic of an electro-dynamic loudspeaker

In a previous work [6] at our department a complete
CAE workplace for the design of electrodynamic loud-
speakers has been developed. The standard FEM has
been used to model the linear and nonlinear interaction
of electromagnetic, mechanical and acoustical fields for
small signal and large signal analyses.

In this work we restrict ourselves to the study of the
small signal behavior of the elasto-acoustic coupling and
show that by applying the mortar FEM, we can further
improve the methods developed in [6]. Since the me-
chanical parts of a loudspeaker need much finer spatial
discretization than the acoustic propagation domain, we
gain a lot of modelling flexibility, because we are not
restricted to geometrically conforming triangulations of
the problem domain anymore. Due to the same reason
we can choose a very uniform and quite coarse grid for
acoustics. In each sub-domain we are able to choose the
approximation order independently. Increasing the ap-

proximation order in acoustic sub-domains is justified by
the fact that the solution is known to be very smooth,
and that we can reduce numerical dispersion [1]. For
mechanics this reduces locking effects.

The current paper is organized into the following sec-
tions: In section 2 we give a brief introduction to the
mortar FEM in the context of mechanical-acoustic and
acoustics-acoustics coupling. In section 3 we describe
the geometrical setup of the loudspeaker as well as the
types of analyses we perform and the applied loads and
boundary conditions. Section 4 presents the results of
our calculations. We draw a conclusion in section 5 and
give an outlook to future studies.

2 Mortar Finite Elements

The term “mortar finite elements” refers to the fact
that in this extension to the standard FEM different
discretizations, which can be nonmatching in general
may be used in the geometrical subdomains of a prob-
lem (cf. Fig. 2). The sub-domains get “glued” together
by a special formulation.

Ω1 Ω2

Ω3 Ω4

Γi

Figure 2: Example for a nonmatching grid with four
sub-domains Ωi=1...4 and internal interfaces Γi=1...4

This method has several advantages:

• Independent discretizations in sub-domains allows
tuning of the element size for each physical field
in multiphysics problems.

• Approximation order can be chosen independently
for each sub-domain.

• Preprocessing is much more flexible since grids in
different sub-domains do not influence each other.
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• The method can be used for parallelization. If only
a single physical field is involved, our method can
be classified as a Finite Element Tearing and In-
terconnection dual-primal (FETI-DP) method in
domain decomposition terms (see e.g. [2])

In this section we introduce the extended formula-
tions for linear mechanical-acoustic and acoustics-acoustics
couplings. The generic geometrical setup can be seen in
Fig. 3.
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Figure 3: Generic geometrical setup for elasto-acoustic
and acoustic-acoustic couplings

We use the standard linear wave equation for acous-
tics written in pressure formulation with c being the
speed of sound

∆p =
1
c2
∂2p

∂t2
on Ωa1,a2 . (1)

We use the linear PDE for mechanics with the dif-
ferential operator B, elasticity tensor [c], volume forces
fV and density ρm

BT[c]Bu + fV = ρm
∂2u
∂t2

on Ωm . (2)

To simulate free field radiation at the boundary of
our computational domain we apply the standard ab-
sorbing boundary condition (cf. [5])(

∂

∂t
+ c

∂

∂n

)
p = 0 on Γabc . (3)

2.1 Mechanical-Acoustic Coupling

At the interface Γma between the mechanical and the
first acoustic sub-domain we require that the mechan-
ical surface normal velocity v and the acoustic normal
particle velocity va be equal

v · n = va · n .

In primal field variables this condition can be rewrit-
ten as

∂2u
∂t2
· n = − 1

ρa
∇p · n , (4)

with ρa being the density of the acoustic fluid.

Further on we stipulate that the mechanical normal
stress acting on the interface is equal to the total acous-
tic pressure p

[σ] · n = −np . (5)

By deriving the weak form of Eq. (1) and substi-
tuting Eq. (4) for the arising surface integral we arrive
at

2∑
i=1

 ∫
Ωai

1
c2
wp̈ dΩ +

∫
Ωai

∇w ·∇p dΩ


+

∫
Γma

ρaw n · ü dΓ = 0 . (6)

By using Eq. (5) we obtain for the weak formulation
of the mechanical PDE Eq. (2) the following relation∫

Ωm

ρmw · ü dΩ +
∫

Ωm

(Bw)T[c]Bu dΩ +

∫
Γma

w · np dΓ =
∫

Ωm

w · fV dΩ . (7)

A more detailed derivation can be found in [4] re-
spectively [3].

2.2 Acoustic-Acoustic Coupling

Between two acoustic sub-domains the acoustic pres-
sure and its normal derivative should be continuous in
a strong sense, i.e.

p1 = p1 and
∂p1

∂n
=
∂p2

∂n
on Γaa .

Since this requirement cannot be fulfilled on an inter-
face with geometrically nonmatching triangulations on
both sides, the flux continuity condition will be enforced
by introducing a Lagrange multiplier

λ = −∂p1

∂n
= −∂p2

∂n
. (8)

The continuity in the trace will be enforced in a weak
sense ∫

Γaa

(p1 − p2)µ dΓ = 0 , (9)

for all test functions µ out of a suitable Lagrange
multiplier space Λ.

After deriving the weak form of Eq. (1) and inserting
conditions Eq. (8) and Eq. (9), one arrives at the dual-
primal problem

2∑
i=1

 ∫
Ωai

1
c2
wipi dΩ +

∫
Ωai

∇wi ·∇pi dΩ

 (10)

+
∫

Γaa

(w1 − w2)λ dΓ = 0

∫
Γaa

(p1 − p2)µ dΓ = 0 .
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We note that the functions from the Lagrange mul-
tiplier space Λ are used as a basis for describing the
conormal derivative of p in Eq. (8) and as test function
µ to satisfy condition Eq. (9).Since the interface Γaa is
only artificial in our case, i.e. no change in material pa-
rameters occurrs, we may arbitrarily define one side of
the interface as slave or non-mortar side and the other
one as master or mortar side. In our work we use the
trace space of the triangulation on the non-mortar or
slave side as a basis for Λ. For other choices of bases
for Λ see [3]. We note that the Lagrange multiplier has
to be modified at the crosspoint CP. Details about the
implementation of this method can be found in [7].

Finally we apply a standard implicit Newmark time
stepping scheme for transient simulations (refer to [5]).

3 Problem Setup

We use our method for the prediction of sound fields of
an electro-dynamic loudspeaker under small signal ex-
citation, i.e. all calculations are conducted linear. The
geometry and material parameters for a subwoofer with
a specified frequency range of 20Hz - 5kHz have been
taken from [6]. We restrict our analysis however to the
interaction of the mechanical parts with the surrounding
air and do not regard themagneto-dynamic-mechanical
interaction. The mechanical parts of the loudspeaker,
denoted by Ωm in the following, excluding the magnetic
assembly, can be seen in Fig. 4.

Ωm

Force

Voice Coil

Former
Spider

Diaphragm

Surround

Figure 4: Mechanical parts of loudspeaker.

Our problem domain is axi-symmetric and contains
the loudspeaker as well as two acoustic sub-domains.
One for the acoustic near field Ωa1 and another one for
the far field Ωa2 as depicted in Fig. 5. The mechanical
load gets applied to the former as a pressure load on
the top area of former. Its value was chosen to produce
relastic sound pressure levels at the point of interest.
The assembly is mechanically fixed in both directions
at the spider and the surround (cf. Fig. 4).

To demonstrate the flexibility of the method, we
compare a number of test cases using harmonic and
transient analyses. The reference of all our calculations
is a conforming triangulation of the problem domain
with standard second order quadrilateral elements as
depicted in Fig. 6 taken from [6]. It is important to
note that the fine discretization of Ωm in (CG) affects
all other parts of the grid.

For the nonmatching mechanical-acoustic and mech-
anical-acoustic-acoustic couplings we replace the discretiza-
tions of Ωa1 and Ωa2 with a mixture of triangles and

Ωm

Ωa1

Ωa1

Γma

Γaa

Γabc

Axis of Symmetry

Point of Int. (y=1m)

CP

11 cm
180 cm

Figure 5: Computational domain.

Ωa1

Ωa1

Ωa2

Ωa2

Nonconforming Grid (NC)

Conforming Grid (CG)

Figure 6: Overall grid can be composed of several
subgrids.

quadrilaterals of different approximation orders. In the
latter case an artificial non-matching interface is intro-
duced on Γaa. For the nonmatching acoustic-acoustic
coupling just the discretization of Ωa2 is replaced. Table
1 gives an overview of the different setups. The vertical
line in each row of the table represents the location of
a nonmatching interface. Bold font represents a part of
the conforming grid and italic font represents a part of
the nonconforming grid.

The maximal element size (∼ 1cm) is chosen to ade-
quately support a frequency (corresponding to the small-
est wave-length) of up to 5kHz for linear approxima-
tion order. To determine the eigenfrequencies and nat-
ural modes of the mechanical system an eigenfrequency
analysis is conducted for Ωm. Further on the resulting
signals at the point of interest of coupled mechanical-
acoustic transient and harmonic analyses get compared
to each other for the frequency range 20Hz - 5kHz. For
the transient simulations we use triangle pulse of length
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Table 1: Overview of Test Setups

Test case Ωm Ωa1 Ωa2

conforming quadr.

acou-acou1 lin. quadr.

acou-acou2 quadr. quadr.

mech-acou1 lin. quadr.

mech-acou2 quadr. quadr.

mech-acou-acou quadr. quadr. quadr.

T = 60µs as excitation and a timestep of ∆t = 5µs.
Mechanical Rayleigh damping is applied with a loss fac-
tor tan δ = 0.25 for the surround and tan δ = 0.05 for
the other mechanical parts.

4 Numerical Results

4.1 Eigenfrequency analysis

For getting a better understanding about how sound is
generated by our experimental setup we conduct a me-
chanical eigenfrequency simulation on Ωm with linear
and second order approximation. The resulting eigen-
frequencies and their corresponding natural modes are
shown in Fig. 7

47.41 Hz 353.37 Hz

779.15 Hz 836.42 Hz

865.11 Hz

Figure 7: Mechanical natural modes of loudspeaker
(quadratic).

We can see that the first eigenfrequency is a pure
mode of the surround. It is the only mode which consid-
erably contributes to the displacement of the diaphragm.
The next mode can be solely attributed to the spider.
As frequency gets higher more and more mixed modes
are introduced. Their contribution to the displacement

of the diaphragm however, is getting more and more
negligible.

Table 2: Eigenfrequencies for lin. and quadr. elements.

linear quadratic

50.36 Hz 47.41 Hz

366.14 Hz 353.37 Hz

872.99 Hz 779.15 Hz

886.18 Hz 836.42 Hz

1020.78 Hz 865.11 Hz

4.2 Harmonic analysis

For the harmonic analysis we performed a logarithmic
frequency sweep in the range of 20Hz - 5kHz. In Fig. 8
we plotted all acoustic pressure amplitude signals at the
point of interest. It can clearly be seen, that all of our
test setups nearly produce the same results. One can
also see, that the lower previously computed mechanical
eigenfrequencies are also present in the acoustic signal.
The only noticable difference shows up for acou-acou1
and mech-acou1 since the mechanical sub-domain for
these cases has been calculated with linear elements.
The model is more stiff for these cases therefore the
eigenfrequencies move upwards. In Fig. 9 the acoustic
pressure field is shown at 5kHz. The detail shows the
nonmatching grids in the vicinity of the surround.
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Figure 8: Results of harmonic simulation.

4.3 Transient analysis

The conditions for the spatial discretization when con-
ducting the transient analysis are more demanding com-
pared to the harmonic setting. Since we simulate an ex-
itation by a Dirac pulse which, when transformed into
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Figure 9: Sound pressure amplitude field at 5kHz
(mech-acou-acou).

the frequency domain, contains a broad range of fre-
quencies, spurious reflections may be generated espe-
cially at acoustic-acoustic interfaces. Our spatial dis-
cretization is tuned however for a maximum frequency
of 5kHz, but the excitation signal may contain even
higher frequencies than that which the discretizations
on both sides can not handle appropriately. Nonethe-
less our method works well for all test cases as Fig. 10
shows. In Fig. 11 the pressure pulse is depicted shortly
after passing the point of interest.
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Figure 10: Results of transient simulation.

5 Conclusion

We have shown that by using the mortar FEM great
benefits arise for the analysis of mechanical-acoustic cou-
pled problems. The method greatly improves modelling
flexibility since grids in subdomains may be completely
independent from each other. This is not only true for
the spatial discretization but also for the order of ap-
proximation. The method is suited for conducting har-
monic and transient analyses. If required, the method
can also be used for parallelization. Since its field of ap-
plications is so broad, the mortar FEM has undergone
serious mathematical investigation over the years and
has therefore solid theoretical foundations.

Figure 11: Transient sound pressure field at t = 4ms
(mech-acou2).

Our next steps in research will be the integration of
the mortar FEM with higher order FEM as well as the
evaluation for practical applicability of the method to
sensor and actuator design.Especially the investigation
of the mortar FEM for nonlinear couplings will play a
major role in the future.
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