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With increasing number of electrical devices, e.g. air conditioning systems, used in homes and offices,
noise pollution is becoming a more and more relevant topic. A large amount of this noise is generated by
turbulent flows and laminar flows at leading and trailing edges, where mainly tonal noise is generated.
The objective of our contribution is to simulate the generation as well as the propagation of noise inside
of rotating devices. The acoustic source terms are obtained from the fluid dynamics solution by using
Lighthill’s acoustic analogy. The acoustic domain is decomposed into a rotating part and a fixed part.
The coupling between these two parts is enforced at their interface by a mortar finite element method,
which uses Lagrange multipliers in order to “glue” the geometrically independent parts together. The
mortar method takes into account the movement of the rotating part by a moving nonmatching grid,
that is recomputed at each time step.

1 Introduction

If one wants to reduce the flow-generated noise in rota-
ting devices—such as fans, impellers, or compressors—
one needs to understand the mechanisms of noise gene-
ration in these technical systems. Consequently one can
optimize the device’s geometry not only with respect
to performance, but also with respect to noise. Often
simulations are conducted in order to obtain a better
understanding of noise generation, since measurements
are difficult to carry out. There have been approaches to
simulate the generated noise only in the static part of a
device, and to account for the sound in the rotating part
solely through the compressible flow computation [1].
However, such an approach needs a highly accurate flow
computation to resolve the acoustic scales. In addition,
the interaction of the acoustic field between the fixed
and the rotating part may not be correctly taken into
account.

Our approach is different in that we compute sound
propagation in the whole system based on sound sources
computed from a compressible flow solution using Light-
hill’s analogy. In this way we can study the mechanism
of noise propagation in rotating parts, too. The coup-
ling between the rotating and the fixed computational
domain is realized on nonmatching finite element grids
using a mortar method. This formulation has proven to
work well for standard domains with fixed geometry [9].
The aim of this work is to show, that this method is also
applicable for sound propagation in rotating systems.

2 Physical Problem

2.1 Aeroacoustic Analogy

For the computation of flow-induced noise we use Light-
hill’s inhomogeneous wave equation [6, 7] for the sound
pressure p∼

1

c2
0

∂2p∼

∂t2
−

∂2p∼

∂x2
i

=
∂2Lij

∂xi∂xj

. (1)

The PDE is loaded on the right hand side by Lighthill’s
tensor

Lij = ρuiuj + ((p− p0)− c2

0(ρ− ρ0))δij − τij , (2)

which is calculated on the basis of data from a turbu-
lent flow solution, that provides the density ρ, the par-
ticle velocity u, the hydrodynamic pressure p, and the
viscous stress tensor τij . The mean values of density
ρ0, and pressure p0, as well as the speed of sound c0

are assumed to be given constants, and δij denotes the
Kronecker delta. The region of turbulent flow—called
source region —can be kept quite small compared to
the region of sound propagation. Outside of the source
region Lighthill’s tensor is set to zero, because here the
disturbances in the fluid are solely due to acoustic waves.

In case of an isentropic flow at low Mach numbers,
the source tensor may be further simplified. The vis-
cous stress tensor τij is responsible for the dissipation
of acoustic energy into heat. This results in a damping
over very large distances and is therefore neglected. The
term (p−p0)−c2

0
(ρ−ρ0) is only relevant for anisotropic

media and can be assumed to be very small in air, com-
pared to the first term of Lij . Taking these simplifi-
cations into account, the source tensor is approximated
by

Lij ≈ ρuiuj . (3)

A detailed discussion of our finite element formula-
tion and its application to practical problems can be
found in [5].

2.2 Rotating Formulation

Before we define a rotating acoustic system mathemati-
cally, we need to clarify, what physical meaning should
be expressed by such a formulation. Strictly speaking,
no ideally rotating volume of gas or fluid can exist, un-
less it is completely contained in a solid closed body,
that is rotating itself. But since this case is irrelevant
for technical applications, we need to make some sim-
plifications. Assuming that the fluid volume inside an
impeller or compressor is moving together with the ro-
tating parts, sound propagation occurs with respect to
the rotating frame of reference. Thus the computational
domain is composed of a rotating region Ω1, that cou-
ples to a surrounding stationary region Ω2 at inflow and
outflow boundary layers. This is clearly an extensive
simplification, since we assume an exactly defined inter-
face between moving and stationary fluid regions. In
reality one would rather find a transition zone. On the
other hand this is a similar assumption as used in sliding
mesh techniques for computational fluid dynamics. So
it is a natural choice to compute flow and sound propa-
gation in the same frame.

Having in mind the discussion above, we are now
ready to formulate the mathematical problem for the
PDE defined by Eq. (1) and (3). Given an open bounded
domain Ω := Ω1 ∪ Ω2 in R

2 (depicted in Fig. 1), where
the interface ΓI := Ω1 ∩ Ω2 is a circle with center O.
Let ΓA denote the outer boundary of the domain. Ana-
logously to [8] we define the rotation of Ω1 by the ope-
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rator rt : Ω1 → Ω1, which describes the rotation at time
t by an angle θ = ωt, where ω is the circular speed of
rotation. The reverse mapping is realized by the inverse
operator r−t. Then we may write the rotating region as
a function of time

Ω1(t) = rtΩ1(0). (4)

ω

Ω1

Ω2

ΓI

nA

nI

ΓA

O

Figure 1: Sketch of the computational domain Ω

The unknown sound pressure is then split into a pair
p∼ = (p1, p2), defined by the restriction of the unknown
to the subdomains

pk : Ωk × [0, T )→ R, k = 1, 2. (5)

On each subdomain Ωk we define the unknown pk in
Lagrangian variables, i.e. each subdomain has its own
frame of reference. In this way we avoid the presence of
a convective term, but the movement is accounted for
in time-dependent coupling conditions, that guarantee
the continuity in the trace and flux of pk (cf. Eq. (7)
and (8)). On ΓA an absorbing boundary condition is
imposed (see Eq. (9)). The strong formulation of the
problem reads:

Find p1, p2 such that

1

c2
0

∂2pk

∂t2
−

∂2pk

∂x2
i

=
∂2Lij

∂xi∂xj

in Ωk, k = 1, 2, (6)

p1(r−tx, t) = p2(x, t) on ΓI , (7)

∂p1(r−tx, t)

∂nI

=
∂p2(x, t)

∂nI

on ΓI , (8)

∂p2

∂t
+ c0

∂p2

∂nA

= 0 on ΓA, (9)

pk(x, 0) = p0

k in Ωk, k = 1, 2, (10)

where p0

k is a given initial condition, and nA, nI are the
outward normal unit vectors on ΓA,ΓI , respectively.

It is important to note, that this formulation only
accounts for the movement of the fluid volume and the
aeroacoustic sound sources contained in it. Refraction
of sound waves in shear layers is not included explicitly
in the formulation.

3 Finite Element Formulation

3.1 Weak Problem Formulation

In the following we omit the absorbing boundary and
initial conditions for ease of presentation, and refer to [4]
for details on this issue. The problem defined by Eq. (6)–
(8) can be reformulated in a weak sense by making use
of the functional space

Tk = {f(·, t) | f(x, t) ∈ H1, x ∈ Ωk}, k = 1, 2, (11)

where H1 denotes the Sobolev space. The weak formu-
lation is then obtained by multiplying Eq. (6) with test
functions wk ∈ H1 and integrating over each subdomain
Ωk ∫

Ωk

1

c2
0

∂2pk

∂t2
wk dΩ−

∫
Ωk

∂2pk

∂x2
i

wk dΩ

=

∫
Ωk

∂2Lij

∂xi∂xj

wk dΩ, k = 1, 2. (12)

The above equation can be rewritten using Green’s in-
tegral theorem [2], resulting in

∫
Ωk

1

c2
0

∂2pk

∂t2
wk dΩ +

∫
Ωk

∂pk

∂xi

∂wk

∂xi

dΩ−

∫
ΓI

∂pk

∂n

wk dΓ

= −

∫
Ωk

∂wk

∂xi

∂Lij

∂xj

dΩ, k = 1, 2. (13)

The interface conditions applied at ΓI are realized
by a mortar element method proposed by Flemisch et
al. [3]. The coupling condition for the flux, defined in
Eq. (8), is enforced in a strong sense by introducing the
Lagrange multiplier

λ = −
∂p1(r−tx, t)

∂nI

= −
∂p2(x, t)

∂nI

. (14)

In contrast, the coupling condition for the trace (see
Eq. (7)) is incorporated in a weak sense as

∫
ΓI

(p1(r−tx, t)− p2(x, t))μ dΓ = 0, (15)

with μ being a test function out of a suitable Lagrange
multiplier space Mh, which will be defined later.

By inserting the definition of the Lagrange multiplier
λ into the third term of Eq. (13), we arrive at the weak
formulation of our problem.

Find p1, p2, λ such that

2∑
k=1

⎛
⎝ ∫

Ωk

1

c2
0

∂2pk

∂t2
wk dΩ +

∫
Ωk

∂pk

∂xi

∂wk

∂xi

dΩ

⎞
⎠+

+

∫
ΓI

(w1−w2)λdΓ = −

2∑
k=1

⎛
⎝ ∫

Ωk

∂wk

∂xi

∂Lij

∂xj

dΩ

⎞
⎠ , (16)

∫
ΓI

(p1(r−tx, t)− p2(x, t))μ dΓ = 0, (17)

for all μ, w1, w2.
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3.2 Discretization

For the spatial discretization with finite elements we in-
troduce triangulations Tk of the subdomains Ωk, where
the mesh size is denoted by hk = max {diam(S) |S ∈
Tk}, k = 1, 2. These triangulations are completely in-
dependent, i.e. in general h1 �= h2 must be assumed, so
that the triangulations are nonmatching at ΓI .

For λ, μ the definition of a Lagrange multiplier space
is required. We choose to define the Lagrange multiplier
space as the space of continuous functions on the sta-
tionary side Γ2

I := T2

∣∣
ΓI

of the interface

λ, μ ∈Mh :=
{
g ∈ C0(Γ2

I )
}

. (18)

In nomenclature of the mortar methods, the rotating
region Ω1 is the master and the stationary region Ω2 is
the slave.

The unknowns p1, p2, λ are discretized on T1, T2,Γ
2

I

using nodal finite elements with a standard Lagrangian
basis of first order. After the spatial discretization of
Eq. (16) and (17) one may set up a semidiscrete system
of the form ⎛

⎝ M1 0 0
0 M2 0
0 0 0

⎞
⎠

⎛
⎝ p̈1

p̈2

λ̈

⎞
⎠+

+

⎛
⎝ K1 0 M

0 K2 D

MT DT 0

⎞
⎠

⎛
⎝ p1

p2

λ

⎞
⎠ =

⎛
⎝ L1

L2

0

⎞
⎠ , (19)

which is a symmetric saddle point problem. The coup-
ling matrices are computed as [3]

[D]pq =

∫
Γ2

I

Np,2 φq dΓ, [M]pq =

∫
ΓI

Np,1 φq dΓ, (20)

where Np,1, Np,2 denote the nodal basis functions on the
triangulations T1, T2, respectively, and φq is the nodal
basis function of the Lagrange multiplier at node q. The
calculation of D does not deviate from the standard fi-
nite element procedure, since both basis functions are
defined on T2. Opposed to that, M requires special at-
tention, because Np,1 and φq are defined with respect to
different grids. This issue will be addressed in the next
section. Furthermore M has to be recomputed for each
time step to account for the rotation of T1.

In order to obtain a fully discrete system, derivatives
with respect to time are discretized by a second order
implicit finite difference scheme of the Newmark family.

3.3 Implementation Details

The only open question left is, how to compute an in-
tegral of the form

∫
Np,1 φq dΓ? This is not obvious,

because Np,1 is defined on T1 and φq is defined on Γ2

I .
In case of planar interfaces, the integral is simply com-
puted on the intersections of the master’s elements with
the slave’s elements. This is not possible directly in
our case. Since we are dealing with a circular inter-
face, elements on both sides of the interface are not
even collinear. A solution, commonly used in mortar
methods, is to project an element of the master onto
the plane of a slave element (Fig. 2(a)). The product of

the basis functions is then computed on the intersection
of the slave’s element with the projection of the master’s
element. For the numerical evaluation of the integral,
the integration points must be projected back onto the
master element (Fig. 2(b)). Details on the latter two
steps will be provided in the following.

(a) (b)

Figure 2: Treatment of the circular interface:
projection of non-collinear elements (a),
back-projection of integration points (b).

Note that this is one out of a variety of possible so-
lutions. It is also possible to project the slave element
onto the master side, or to project both elements onto
an intermediate plane. The reason why we use the so-
lution presented here is, that in this way we only have
to recompute the coupling matrix M in each time step,
while D has to be computed only once.

3.3.1 Intersection Calculation

Via an orthogonal projection of a master element onto
a slave element, we receive two collinear line segments
as input, given as the nodes of the master element’s
projection [m′

1
, m′

2
] and the slave element [s1, s2]. The

intersection calculation reduces in this case to an one-
dimensional problem. For both nodes m′

1
, m′

2
we calcu-

late the local coordinates ξ1, ξ2 with respect to the slave
element. Since we have no information about the di-
rection of line segments, the local coordinates are then
sorted, so that the relation ξ1 < ξ2 always holds. There
are in total four cases (depicted in Fig. 3) that lead to
an intersection:

1. 0 < ξ1 < 1 ∧ ξ2 ≥ 1:
the intersection is the line [m′

1, s2]

2. ξ1 ≤ 1 ∧ 0 < ξ2 < 1:
the intersection is the line [s1, m

′
2
]

3. ξ1 ≤ 0 ∧ ξ2 ≥ 1:
the intersection is the line [s1, s2]

4. ξ1 > 0 ∧ ξ2 < 1:
the intersection is the line [m′

1, m
′
2]

00

00

1

11

11

2

3 4

ξ1ξ1

ξ1ξ1

ξ2ξ2

ξ2ξ2

Figure 3: Four cases for the intersection of two
collinear lines
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3.3.2 Back-projection of Integration Points

Having applied the intersection algorithm described above,
we are now ready to set up the coupling matrix M. For
numerical integration we use a Gaussian quadrature for-
mula, which requires the evaluation of Np,1 at certain
integration points xl. Since the integration points lie on
the intersection element, we need to compute the back-
projection P−1(xl) onto the master element according
to Fig. 4. First we compute the unit normal vectors of

nm

ns

a

αd

m1

m2

s1 s2

P−1(xl)

xl

Figure 4: Back-projection of an integration point onto
the master element

both the master and the slave element. Then we com-
pute for each integration point its distance d to the mas-
ter element. The unknown distance a is then computed
via the relation

cosα = −nm · ns =
d

a
. (21)

Finally we get P−1(xl) by scaling the normal vector ns

with a and adding it to the position vector xl. In alge-
braic notation this algorithm reads:

mi: nodes of the master element,
si: nodes of the slave element
xl: global coordinate of l-th integration point

nm :=

(
m1y −m0y

m0x −m1x

)

nm := nm

|nm|

ns :=

(
s1y − s0y

s0x − s1x

)

ns :=
ns

|ns|

for all xl do

d := |nm · (xl − p0)|

P−1(xl) := xl +
d

|nm·ns|
ns

end for

4 Numerical Study

The verification of our method was performed for two
test cases (sketched in Fig. 5). In both cases the outer
boundary, on which absorbing boundary conditions are
applied, is a circle with a diameter of 2 m. The rotating
interface is a circle with a diameter of 1 m and is concen-
trical with the outer boundary. The difference between
the two cases is the interior boundary:

1. a circle with center (0, 0) and diameter 0.2 m,

2. a circle with center (0.1 m, 0) and diameter 0.2 m.

In both cases, an artificial sine load at a frequency of
150 Hz is applied at the interior boundary in order to

model an aeroacoustic source. Therewith we obtain for
case 1 a fixed monopole source and for case 2 a rotating
monopole source.

ΓA

ΓI

0.2 m

1.0 m

2.0 m

Figure 5: Sketch of the computational domain of two
test cases: absorbing b.c. (ΓA), interface (ΓI),

excitation in case 1 (solid green line), excitation in
case 2 (dotted green line).

In order to avoid numerical errors, the discretization
was chosen rather fine. In space a maximal element
size of 5 cm was used, which corresponds to 45 linear
finite elements per wavelength of the excitation and an
angular resolution of 3◦. The temporal excitation uses
40 time steps per period of the excitation, resulting in a
time step of 0.167 ms. The interior domain rotates by an
angle of 1◦ per time step, leading to a speed of 1000 rpm.
Although the initial discretization is conforming at the
interface, the situation is truly nonconforming, since the
rotation leads to a step size that differs from the element
size in axial direction.

For the first test case one would expect, that the ro-
tation has no effect on the sound propagation, because
the sound source is perfectly symmetric with respect to
the axis of rotation. On the other hand, for test case 2
a change in amplitude and frequency is expected for
different observation points. We pick out two locations,
the topmost and the lowermost points of the domain, for
which we want to validate the computed sound pressure.
Fig. 7 shows that the numerical solution reflects the ex-
pected behavior. In the first case the sound pressure is
identical in both locations, while in the second case the
sound pressure clearly shows Doppler’s effect. Further-
more, one can see in a contour plot of the sound pressure
(Fig. 6) that the interface conditions work well, although
the interface is placed in the near field (λ ≈ 2.27 m).

5 Conclusions

In this contribution a finite element formulation for sound
propagation in rotating systems was proposed. The ini-
tial approach was to decompose the computational do-
main into a rotating region and a fixed region, each of
which has its own frame of reference. The coupling at
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Figure 6: Snapshot of test case 2 at an angle of 240◦:
grid (top), solution (bottom)

the interface between rotating and stationary region was
enforced by a mortar method on nonmatching finite ele-
ment grids. Numerical examples in two dimensions have
shown that the method is stable and produces correct re-
sults. In the future it is desirable to extend the method
to three dimensions, in order to apply it to technical
devices.
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