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Guided waves represent promising non-destructive evaluation (NDE) techniques. Their advantage of long 
distance propagation is however hampered by complex wave scattering at each discontinuity along the 
investigated structure. These scattered waves can be used to locate and size possible defects. Theoretical 
investigation is a prerequisite step in the development of a NDE technique. Planar metallic structures with 
localized thickness variation imposed by design represent possible new industrial structures that could be tested 
using guided waves. The waves scattered at the region of variable thickness must be theoretically predicted and 
experimentally measured before any defect could be detected. Very few authors have investigated waveguides 
with continuous variation of thickness. Our previous numerical and experimental studies have proven the 
complexity of the scattering phenomenon in such cases. Among other remarks is the curved shape of the wave 
front. 
The present work investigates properties of the waves in the linear thickness variation region of the waveguide. 
A plain strain model is theoretically investigated and numerically tested using specialized finite elements based 
algorithms. Specific properties such as stress and displacements fields are determined by numerical simulation at 
several frequencies and slope angles.  

1 Introduction 

The guided waves propagate in elastic structures for 
relatively long distances and are scattered by defects along 
this path. This main advantage has led to many scientific 
works during the last decades. The extended use of 
numerical computations using the fast increasing computer 
capabilities, has offered many solutions to particular 
problems concerning guided waves. Dispersion curves for 
the most general case of guided waves of any cross-section 
constant along the waveguide, made of any anisotropic, 
viscoelastic materials are now available [ 1], [ 2]. The 
scattering of any incident guided mode can be theoretically 
and numerically investigated and modal amplitudes, modal 
energy and surface displacements can be obtained with 
good accuracy [ 3]. Another problem related to waveguides 
is the wave propagation along variable cross-section 
regions. Technical applications are plates with variable 
thickness used in aeronautical and automotive industries, 
the Gaussian shape of the welding seam between two 
plates, etc.  
A fluid layer of variable thickness is investigated in [ 4], 
using a coupled mode theory which allowed a new intrinsic 
mode of the wedge to be deduced. Another study of 
cylindrical waveguides of variable radius and/or wall 
thickness and material properties is presented in [ 5]. 
Experiments doubled by numerical simulations on wave 
propagation in an aluminum wedge are presented in [ 6] and 
interesting phenomena such as the presence of critical 
thickness corresponding to modal cut-offs are deduced. 
Guides waves have also been investigated recently [ 7] for 
plates with one plane side and the other side having a 
Gaussian variation of thickness. The global geometry in this 
case is not symmetric about the middle plane of the plate. 
As expected, experiments and numerical predictions 
indicate a modal conversion between the symmetrical and 
anti-symmetrical modes at ratios depending on the local 
thickness. Higher slope on the Gaussian side involves rapid 
conversion to the Lamb modes at the local 
frequency*thickness value. This so-called adiabatic 
behavior of modes is not easily determined, because the 
conversion is continuous and classical experimental 
techniques require a certain distance for modal 
identification.  
The present study aims a more in-depth study of the 
adiabatic character of guided waves. In order to simplify 

the approach, the geometry has a plane of symmetry which 
includes the wave vector. This configuration avoids modal 
conversion between symmetric and anti-symmetric modes. 
Only the local thickness of the waveguide, depending on 
the slope will influence the modal conversion.   

2 Theoretical aspects 

A plane strain model is used in the following and the 
material is assumed to be isotropic and homogeneous of 
mass density ρ and elasticity coefficients C11, C66,  
(C12=C11-2C66).  
 

 
    Fig. 1 Geometrical configuration of the tapered plate 

 
The displacements field has two components in this model. 
Assuming harmonic waves of angular frequency ω, the 
displacements functions become: 
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The linear elasticity relations between strains and stresses 
are written as: 
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can be cast into matrix form as: 
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The solution of the harmonic wave propagation can be 
obtained using the finite elements method and wave 
absorbing regions as presented in [8]. Pure Lamb waves 
such as S0 are generated in the x<0 region by imposing on 
the two parallel faces, appropriate functions of x for several 
wavelengths. Taking advantage of the constant thickness, 
for a given frequency, the corresponding wavelengths are 
obtained from the dispersion curves. The elastic 
coefficients are real values in the numerical model, except 
for short regions at the two extremities along the x 
coordinate of the model. In these regions, imaginary parts 
of the elastic coefficients are added, increasing their values 
with the third power of distance from the elastic domain, 
such that no reflections take place from the model vertical 
boundaries (x=const). The displacements along the y=0 
line, as obtained from the finite element simulation are 
extracted and used to determine the characteristics of the 
adiabatic modes. If S0 is the incident mode, then u(x,0) 
displacements provide information such as the successive 
positions at which u(x,0)=0, which are denoted by x1, x2, 
…, xn. The distance xi+1- xi is thus considered as the local 
half-wavelength λ(xi)/2, which can be converted to local 
wavenumbers k(xi). Due to the geometric symmetry of the 
structure, no modal conversion can occur. This method 
remains to be compared with the sliding window Fourier 
transforms. 
Several slope angles have been chosen for the numerical 
tests. In the following, only S0 mode at a single frequency is 
assumed incident into the wedge region. The local 
wavenumbers are compared in non-dimensional form (k.h, 
in which h is the local distance between the free surfaces at 
a given x) versus the f.h value at the position x.             

3 Numerical results 

A 2 mm thick aluminium plate (cL= 6380 m/s, cT= 3100 
m/s, ρ=2700 kg/m3) is submitted to a harmonic excitation at 
800 kHz. The excitation is produced as normal pressure 
with exp(kx) dependency, in which k is the wavenumber of 
the S0 mode in the 2 mm plate, modulated by a Gaussian 
envelope along 10mm, and centred at 50mm from the 
wedge angle. An example of the harmonic solution is 

presented in Fig. 2 as u(x,y) displacements on the cross-
section of the tapered plate. As the wave enters the variable 
thickness region, its pattern changes and the lines constant 
displacements become curved at some x positions. 
Gradually the displacements become confined to the free 
surfaces of the wedge, as expected from the S0 mode at 
high frequency·thickness (fh) products.   

 
Fig. 2 Longitudinal displacements for the cross-section 

The u(x) displacement along the y=0 line, extracted from 
this finite elements solution is presented in Fig. 3. Its 
harmonic pattern in -60mm to 0mm region can be used to 
confirm by Fourier transform, the presence of a pure S0 
mode.  For x<-60 mm and x>70mm the wave is damped so 
that no reflected waves come from those model boundaries. 
Several slope angles and lengths of free propagation have 
been tested. 

 
Fig. 3 Longitudinal displacements along the center line of 

the cross-section for a 3.72º wedge 

A very good agreement between the local wavenumbers 
obtained as presented in the previous paragraph and those 
of the S0 Lamb mode at the same thickness has been 
obtained for a slope angles less than θ=3º. The comparison 
for θ=1.53º is presented in Fig. 4 for fh less than 6.5 
MHz·mm. The adaptation of the S0 mode to the local 
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thickness of the waveguide in this case, is the reason for 
which, some authors call such a mode as adiabatic.    
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Fig. 4  Wavenumbers (FEM) vs. frequency for a 1.53º 

wedge compared to dispersion curves (S0, S1, S2)  

As the wedge angle has been increased, some discrepancies 
have been noticed. For one tested slope angle θ=3.72º (Fig. 
5), above f.h=5 MHz·mm, three narrow peaks at f.h=5.6, 
6.6 and respectively at 7.9 MHz·mm have been obtained 
and between these peaks, the S0 curve is no longer 
followed.  Even more important variations are obtained at 
higher angles. For example, a wedge slope angle θ=5.14º 
has led to more ample variation indicated in (Fig. 6). These 
angles correspond to different selected maximum 
thicknesses and are not critical values for a specific 
phenomenon. In fact, for angles above 3º, such phenomena 
occur.  

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

k.
h

fH (MHz.mm)

 S0
 S1
 S2

 FEM

 
Fig. 5  Wavenumbers (FEM) vs. frequency for a 3.72º 

wedge compared to dispersion curves (S0, S1, S2)  

Local peaks at approximately f.h=5.7 and 7.2 MHz·mm 
have been obtained.  Since the mesh size used in all these 
cases is almost identical and it has been proven to predict 
well the wave propagation up to f.h=6.5 MHz·mm, finite 
element mesh error has been discarded. It remains as 
possible explanation, the conversion of the incident mode 
S0 to other modes S1, S2 and S3, specific to this type of 
waveguide. However, these peaks do not occur at the cut-

off frequencies of these modes, as can be seen from a 
comparison of Fig. 4 with Fig. 5 or Fig. 6. The modal 
identification procedure based on longitudinal 
displacements is inappropriate in distinguishing individual 
modes in the case of multiple modes existing 
simultaneously.  
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Fig. 6  Wavenumbers (FEM) vs. frequency for a 5.14º 

wedge compared to dispersion curves (S0, S1, S2)  

Another remark concerns the Fourier transform (FFT) of 
the longitudinal displacements as functions of the x 
coordinate. The wavenumbers obtained from the signal in 
Fig. 3 using a rectangular window for 0<x<0.6 is presented 
in Fig. 7. There are three wavenumbers, indicating the 
possible presence of modal scattering, which agrees with 
the previous conclusions. However, the values are 
inaccurate, representing averaged values of the 
wavenumbers, far from the obtained variation of 
wavenumbers with the position on the Ox axis.  
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Fig. 7 Fourier transform of the longitudinal displacements 

at 0<x<0.6, y=0, for a 5.14º wedge 

This fact indicates that classical signal processing 
techniques are less appropriate in this case of linear 
thickness variation. One alternative is to use the so-called 
“sliding window” which includes in the FFT only a selected 
short sub-domain of the signal. The whole signal is divided 
in such short windows and the obtained results are grouped 
as parametric solutions. Even these shorter signal windows, 
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which are producing more accurate results by FFT, are not 
as accurate as the above procedure in the single mode 
regions, but represent a reasonable alternative for small 
slopes. 

4 Conclusion 

The usual approach used to describe the propagation of 
guided waves in tapered plates is that of adiabatic modes. 
The wavenumbers are in fact continuously variable with the 
position along the wedge symmetry plane. A simple method 
has been used to determine the wavenumbers, based on the 
longitudinal displacements in the symmetry plane. The 
adiabatic modes hypothesis has been numerically tested for 
frequency·thickness product up to 6.5 MHz·mm and proved 
to be valid for small slope angles, less than approx. 3º 
without modal conversion. At these angles, the 
wavenumbers at every tested position along the symmetry 
plane coincide with the wavenumbers of the S0 Lamb mode 
in a plate having the same thickness as the local thickness 
of the wedge. 
For higher values of the slope angles, local discrepancies 
occur in the form of wavenumbers peaks, which are 
indicating modal conversion. The continuously variable 
signal remains a problem for future development of new 
signal processing techniques and more detailed 
investigation of modal conversion.  
 
 
 

References  

[1] T. Hayashi, C. Tamayama, M. Murase, Wave structure 
analysis of guided waves in a bar with an arbitrary 
cross-section, Ultrasonics, 44, 17–24, 2006. 

[2] M. V. Predoi, M. Castaings, B. Hosten, C. Bacon, 
Wave propagation along transversely periodic 
structures, J. Acoust. Soc. Am. 121 (4), 1935–1944, 
2007. 

[3] L. Moreau, M. Castaings, B. Hosten, M. V. Predoi, An 
orthogonality relation-based technique for post-
processing finite element predictions of waves 
scattering in solid waveguides, Journal of the American 
Society of Acoustics, 120 (2), 611-620, 2006. 

[4] J.M. Arnold, L.B. Felsen, Coupled mode theory of 
intrinsic modes in a wedge, J. Acoust. Soc. Am. 79 (1), 
31–40, 1986. 

[5] V. B. Galanenko, On coupled modes theory of two-
dimensional wave motion in elastic waveguides with 
slowly varying parameters in curvilinear orthogonal 
coordinates, J. Acoust. Soc. Am. 103 (4), 1752–
1762,1998. 

[6] M. Ech-Cherif El-Kettani, F. Luppé, A. Guillet, 
Guided waves in a plate with linearly varying 
thickness: experimental and numerical results, 
Ultrasonics 42, 807–812, 2004. 

[7] P. Marical, M. Ech-Cherif El-Kettani, M.V. Predoi, 
Guided waves in elastic plates with Gaussian section 

variation: Experimental and numerical results, 
Ultrasonics 47, 1–9, 2007. 

[8] L. Moreau, M. Castaings, B. Hosten, M. V. Predoi, An 
orthogonality relation-based technique for post-
processing finite element predictions of waves 
scattering in solid waveguides, Journal of the American 
Society of Acoustics, vol. 120 (2), 611-620, 2006 

Acoustics 08 Paris

9105


