
Accurate estimation of the duration of tonal signals
emitted by marine mammals

Nicolas Sentenac

Thales Underwater Systems, 525, route des dolines, BP 157, 06903 Sophia Antipolis, France
nicolas.sentenac@fr.thalesgroup.com

Acoustics 08 Paris

9765



Passive marine mammals detection is of great importance nowadays. The goal of this article is to present a tool 
that can be used to accurately measure the duration of tonal emissions from marine mammals. 
Marine mammals emissions can be split into two different kinds. The first one is narrow band pattern emission, 
and the second one is echo-localization clicks that sound like impulsive broadband signals. This article focalizes 
on the former. 
Narrow band signals can be detected in the time/frequency space thanks to the use of the spectrogram and thanks 
to a contrast criterion derived from the one proposed by Buffington. This article will introduce the expression of 
a lower bound of the expectation of the criterion for noisy signal. 
As this lower bound is a function of signal to noise ratio, it can be used to threshold the criterion with the desired 
signal to noise ratio value. When the criterion is computed along time on a sliding window, narrow band signals 
with a higher snr than the thresholding ones are detected as soon as they appear and until they vanish, giving an 
accurate estimation of the duration of such signals. 

1 Introduction 

Passive marine mammals detection is of great importance 
nowadays. The goal of this article is to present a tool that 
can be used to accurately measure the duration of tonal 
emissions from marine mammals, helping to classify them. 
The classification part will not be treated here. 

Marine mammals emissions can be split into two different 
kinds. The first one is tonal emission, which can be defined 
by their narrow band frequency pattern, and the second one 
is echo-localization clicks that sound like impulsive 
broadband signals. This article focalizes on the former. 

Narrow band signals can be detected in the time/frequency 
space thanks to the use of the spectrogram and thanks to a 
contrast criterion derived from the one proposed by 
Buffington in 1974 [1]. The expression of this criterion for 
signal-only and noise-only is straightforward. This article 
will introduce the expression of a lower bound of the 
expectation of the criterion when signal and noise and 
mixed. 

As this lower bound is a function of signal to noise ratio, it 
can be used to threshold the criterion with the desired signal 
to noise ratio value. When the criterion is computed along 
time on a sliding window, narrow band signals with a 
higher snr than the thresholding ones are detected as soon 
as they appear and until they vanish, giving an accurate 
estimation of the duration of such signals.

2 Definition of Buffington’s criterion 

Given a signal whose Power Spectral Density (PSD) is X, 
one of the definition of Buffington’s criterion computed on 
the frequency band B is: 
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When the signal is sampled at Fs, X is estimated on N
samples from the signal: 
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So C can be rewritten with the M estimates of X in the band 

B, dealing with a frequency resolution equal to NFs : 
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For greater convenience M will be dropped in the latter 
equation. It does not make a big difference in the 
demonstration but it makes the curves clearer and 
emphasizes the impact of a small value of M. 
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3 Criterion for white noise only 

It is commonly known that for a white noise of variance 

σo², the values of its PSD (estimated by a single spectrum) 

are distributed according to a χ2 law with two degrees of 
freedom. 
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The second order moment of a χ2 distribution with 2M
degrees of freedom equals to 2(2M)+(2M)², so: 

( ) ( )( )22

2

222ˆ MMXE
Bk

k +=
∈

α (6)

Also, the second order moment of a χ2 law with 2 degrees 
of freedom is 8, so: 
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Finally, the criterion expresses itself by: 
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This expression is needed in the next paragraph. 

4 Criterion for noisy narrow-band 
signal 

Given a narrow-band signal which temporal amplitude is A, 

hidden in a Gaussian white noise of variance σo². 
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The denominator of the criterion expresses the sum of the 
frequency bins containing the energy of both signal and 
noise. 
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The numerator contains the sum of the squared energy of 
the signal. Considering the spectral spread due to temporal 
windowing (Hann window is used here), the energy of the 
signal is spread over four frequency bins. The lower bound 
of the numerator sum can be computed. As shown on Fig. 
1, the estimate of the central frequency can be anywhere 
between two multiples of the frequency resolution 
associated to the DSP computation. 

The sum of squared levels for different shift is given on 
Fig.2: 

Fig. 1 Measured DSP of Hann’s window depending on 
frequency shift 

Fig. 2 Sum of main DSP levels as a function of frequency 
shift 

As forecast, the lower bound of the summed main level of 
the DSP is obtained when the frequency of the sine is at the 
exact mean of two consecutive frequency bins. 

The squared Fourier transform of Hann’s window is given 
by: 
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Knowing that the gain of Hann’s window in relation to 
noise is 2/3, a lower bound of the energy of a half-bin 
shifted bin is obtained: 
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However, tests have been led and showed that in the case of 
a transition between a noise only signal and a noisy sine 
signal, the sine wave might be present only during a 
fraction of the FFT (beginning of the sine signal) and it 
results in a lower value of the DSP. To take into account 
this case, it is advised to use another lower bound of the 
energy. It corresponds to the presence of the sine wave 
during two thirds of the length of the FFT: 
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Taking the two adjacent main bins of the DSP i and j: 
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The lower bound, which can be seen as a threshold of the 
criterion, is given by: 
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Now, trying to discriminate a noisy sine wave from its 
background noise with a given signal to noise ratio snr
(before FFT), the later expression rewrites: 
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To illustrate this expression, let us consider a short sine 
wave (present between 1 and 2) mixed with noise. Fig.3 
shows both the value of the criterion and the value of the 
threshold corresponding to the exact snr of the sine wave 
along time. A good correspondence between the threshold 
and signal to noise ratio can be seen, particularly at the 
lowest snr. 

Fig. 3 Threshold as a function of the snr
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This fact allows a thresholding depending on a minimum 
snr to detect. 

For example, a threshold computed for an snr of -3dB 
allows detecting a signal whose snr is -3dB (signal in the 
dotted box on Fig.4) whereas a signal whose snr is -6dB 
(signal in the dashed box) is not. 

Fig. 4 Example of rejection by the threshold

Fig. 5 Minimum value of the snr used in the threshold as a 
function of N and M

A signal whose snr is lower than the snr used in the 
threshold can make the criterion higher than the threshold, 
but it happens once in a while and is not very annoying. 

Of course, the threshold must be higher than the criterion 
value for noise only (cf. Eq.(8)). Depending on the analysis 
parameters, this constraint gives a lower bound for the snr
to be used in the expression of the threshold: 
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The value of this lower bound varies very slowly with the 
value of M. Fig.5 shows the lower bound of the tresholding 
snr as a function of N, the number a point is the DSP 
computation. 

Let us add that the number M of frequency bins used in the 
criterion must be large enough. When M drops, the criterion 
value tends to be higher than the corresponding threshold, 

reaching a common value whatever the signal snr is. The 
variance of the criterion changes also with the value of M. 

Fig.6 shows for N=1024 and for signal snr of -6, -3 and 
0dB, the corresponding threshold and a zone where the 
criterion value is when computed on 500 randomly 
generated noisy signals. As these zones are overlaid, they 
have been displayed partially transparent. Dashed lines 
mark the outer bounds of the zones. 

As said before, three characteristics of the threshold can be 
observed. First, the threshold is really a lower bound at low 
snr. Second, the criterion value tends to be the same for 
every signal snr when M is small. And last, the variance of 
the criterion value varies with M. 

The fact that the criterion value tends to a common value 
for any snr when M decreases lessens the threshold 
accuracy. Indeed, for a small value of M the criterion value, 
computed on a noisy signal, can rise higher than the 
threshold corresponding to a really higher thresholding snr. 

Fig. 6 Zones occupied by the criterion value for different 
noisy signals and corresponding thresholds 

Fig. 7 Criterion value for white noise as a function of M 

Fig.7 shows, for N={2048, 1024, 512, 256}, the zone 
occupied by the criterion computed upon 500 different 
white noises and the threshold for different snr. The main 
observation is that false alarms may occur more often for 
small values of M. Computing the criterion with about fifty 
points seems to be a lower bound when trying to detect low 
snr signals without raising the false alarm occurrences. 
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5 Examples of application 

Given two different signals emitted by Killer whales, 
spectrograms are computed upon 2048 windowed points 
with strong overlap as shown on Fig. 8 and 9: 

Fig. 8 Killer whale Spectrogram, criterion and threshold 

Fig. 9 Killer whale Spectrogram, criterion and threshold 

These figures shows that even with multiple harmonics, the 
threshold is robust, avoids numerous false alarms and gives 
a good indication of the presence of tonal signals.

5 Conclusion 

This article focused on the accurate estimation of the 
duration of tonal signals emitted by marine mammals. A 
spectral contrast criterion has been used to do so and a 
threshold has been introduced to allow a good separation of 
noise-only signals and noisy narrow-band signals. 
Moreover, this threshold can be tuned with a true signal to 

noise ratio value, permitting to reject most of the signals 
that do not reach this snr value and detect all signals above 
this snr value. The ability to set a threshold according to a 
desired snr value is more convenient than setting it 
empirically. 
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