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Pseudo-Spectral methods are often used as an alternative to the Finite Difference Time Domain (FDTD)
method to model wave propagation in heterogeneous moving media. The FDTD method is robust
and accurate but is numerically expensive. Pseudo-Spectral methods make use of the wavelike nature
of the solution to obtain more efficient time-domain algorithms. The most straightforward of the
Pseudo-Spectral methods is the Fourier method in which a spatial Fourier transform is used to evaluate
the spatial derivatives in the wave equation. Whereas this method is accurate for a weakly heterogeneous
moving medium, it degenerates for media with discontinuous properties. The eigenfunction expansion
method presented here is a way to accurately and efficiently evaluate spatial derivatives in media with
interfaces. As in the Fourier method, transforms may be calculated using FFT’s and spatial sampling
is limited only by the Nyquist condition. The performance of the method is shown in a time-domain
implementation for media with discontinuous density and sound speed.

1 Introduction

Wave propagation problems that do not have analyt-
ical solutions may be solved by numerical methods. For
problems where Green’s functions are known, the gov-
erning acoustical equation in its integral form can be
solved by discretizing interfaces separating sub-domains
(e.g. the boundary element method). For problems
where Green’s functions are numerically too expensive
to evaluate, domain discretization methods can be used
(e.g. finite element (FE) or finite difference (FD) meth-
ods). Generalized FEM and FD methods can be numer-
ically expensive. A way to more efficiently apply domain
discretization methods is to make use of the wavelike
nature of the solution. One such method is the Pseudo-
Spectral (PS) method [1]. For a homogeneous medium,
spatial derivatives of the solution at a certain time can
accurately be calculated by the simplest PS method, the
Fourier PS method. Since spatial Fourier transforms are
used, the spatial resolution is bounded by the Nyquist
criterion (i.e. 2 points per wavelength). The signal is
required to have compact support. This method is more
efficient and requires less storage than the finite differ-
ences time domain (FDTD) method. The Fourier PS
method is still accurate for a weakly non-homogeneous
medium [2], but fails due to Gibbs’ phenomenon if the
medium properties are discontinuous. The Gibbs’ phe-
nomenon can be controlled in the Fourier PS method
by low-pass filtering (while sacrificing accuracy at the
higher frequencies). A post-processing method can be
applied, but is computationally inefficient [3]. For a
solution which does not have spatial local support, spa-
tial derivatives can derived using Chebyshev polynomi-
als. This will however require a higher spatial resolution
than in the Fourier method (π points per wavelength),
a more stringent stability criterion and a multiple sub-
division of the spatial domain [1].
A way to solve wave propagation in discontinuous me-
dia accurately and efficiently is by using a generalized
eigenfunction expansion. This method is an extension of
the Fourier method to discontinuous media. The Four-
ier method appears as the special case of no discon-
tinuity. The generalized (continuum) eigenfunctions are
solutions to the wave equation with the discontinuous
media. In this paper, the 1D continuum eigenfunction
expansion (CEE) for two discontinuous media will be
derived for the wave equation. Some numerical key-
issues are addressed and results of calculations for dis-

continuous media are shown. Results of calculations for
a medium with a slowly varying sound speed are presen-
ted. The numerical efficiency of the CEE time domain
method is compared with that of the FDTD method.

2 Theory

We consider 1D wave propagation in semi-infinite fluid
media, see Fig 1.

Figure 1: The 1D domain is subdivided in two
semi-infinite media, 1 and 2.

Wave propagation is governed by the wave equation:

[
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ρ(x)c(x)2
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]
p(x, t) = 0, (1)

where c(x) and ρ(x) are the piecewise constant wave
speed and density (given by cj and ρj for j = 1, 2) and
p(x, t) is the pressure. To solve this equation in the
time domain, the spatial derivative operator on p(x, t)
will be calculated using the continuum eigenfuction ex-
pansion method. The continuum eigenfunctions satisfy
the eigenvalue equation

[L− εR]ψ(ε, x) = 0, (2)

with L = d
dx

(
1
ρ

d
dx

)
, ψ(ε, x) the eigenfunctions, R =

1
ρc2 and ε the eigenvalues. Two orthogonal continuum

eigenfunctions that are solutions to Eq (2) are:
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where ε ∈ (−∞, 0). The coefficients N+(ε) and N−(ε)
in Eq (3) are normalization constants chosen so that the
orthogonality condition

∫ ∞

−∞

ψ±(ε, x)ψ±(ε′, x)
dx

ρc2
= δ(ε− ε′) (4)

is satisfied. Here the overbar denotes the complex con-
jugate. The coefficients α1, β1, α2 and β2 can be calcu-
lated by the continuity of pressure and normal velocity
at x = 0.

We can now decompose a function p(x, t), the solu-
tion of Eq (1) at a certain time, onto the orthogonal
eigenfunctions by:

P±(ε, t) =

∫ ∞

−∞

p(x, t)ψ±(ε, x)
dx

ρc2
, (5)

where

p(x, t) =
∑
±

∫ 0

−∞

P±(ε, t)ψ±(ε, x) dε. (6)

The operator Lp(x, t) than follows from Eq (2) as:

Lp(x, t) =
∑
±

∫ 0

−∞

ε

ρc2
P±(ε, t)ψ±(ε, x) dε. (7)

Thus, the operator including the spatial derivative is
calculated by transforming p(x, t) through the ortho-
gonal eigenfunctions, multiplying the transformed func-
tion P±(ε, t) by ε

ρc2 and performing the inverse trans-

form to get Lp(x, t). Inserting the eigenfunctions, we
can calculate Lp(x, t) by:

Lp(x, t) = (8)8<
:
−

R
∞

0

k2
1

ρ1π
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P2

”
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−
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k2
2

ρ2π
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”
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dk1 x′ > 0,
,

where ε = −k2
j c

2
j and we integrate over k1,

P1 =
R

0

−∞
p(x, t)e−jk1x dx, and P2 =

R
∞

0
p(x′ c2

c1
)e−jk1x′

dx′.
From Eq (8), it is clear that the spatial derivative oper-
ator is evaluated in the wave number domain k1.

3 Numerical implementation

To obtain Lp(x, t) numerically from Eq (8), fast Four-
ier transforms (FFTs) are used because of their com-
putational efficiency. We assume that our p(x, t) has
compact support for x between −X and U . When cal-
culating P1, we therefore need to integrate from −X to
U . This is done by using zero values for p(x, t) for x > 0.

P1 =

∫ 0

−∞

p(x, t)e−jk1x dx (9)

≈
p(0, t)

2
+ Δx1

NX−1∑
l=0

p(lΔx1 −X, t)e
−j 2πlm

N ,

where N is the total number of discrete spatial points,
NX the number of points for x < 0, NU the number of
points for x > 0 and N = NX + NU − 1. At x = 0,
half the value of p is taken, corresponding to a triangu-
lar integration. By the discontinuity of p(x, t) at x = 0
in the transform of Eq (9), wave number components
are erroneously obtained. The errors will be canceled
by wave number components of the other two parts in
the integrals of Eq. (8). The values of P1 are obtained
by taking the complex conjugate of P1, multiplied by
ejk1(U−X). For P2, integration is done over p(x′ c2

c1
), im-

plying that medium 2 has a different spatial sampling
than medium 1. It is a consequence of harmonizing the
wave number discretization in both media to k1, which
physically means that the implemented spatial discret-
ization of both media captures the same maximum fre-
quency. For P2, we use zero values for p(x′ c2

c1
) for x < 0

and p(0, t)/2 at x = 0. Values of P2 are obtained sim-
ilar to P1. Two Fourier transforms are thus needed to
transform p(x, t) to the wave number domain and after
having multiplied by coefficients in the wave number do-
main, two inverse Fourier transforms are left to obtain
Lp(x, t). The spatial discretization should obey Nyquist
criterion, i.e. 2 points per wavelength.

4 Calculation results

The 1D CEE method to calculate the second spatial de-
rivative will be validated here for several cases.

For a homogeneous medium, i.e. α1 = 1, β1 =
0, α2 = 1 and β2 = 0, Eq (8) returns to: Lp(x, t) =

−

R
∞

−∞

k2

2πρ
Pejkx dk for all x with P =

R
∞

−∞
p(x, t)e−jkx dx.

This is called the Fourier PS method, and only requires
one Fourier transform and one inverse Fourier transform
to obtain Lp(x, t). The results of the CEE method will
be shown along with the results from the Fourier PS
method.

4.1 Spatial derivative

We consider a wave with a Gaussian shape propagating
from medium 1 to medium 2, which we describe analyt-
ically as:

p(x, t) = (10){
α1e

−a(x−(x0+c1t))2 + β1e
−a(x+(x0+c1t))2 for x < 0

e−a(
c1
c2

x−(x0+c1t))2 for x > 0.
,

with α1 and β1 as in Eq (3) and x0 = −64Δx1. The
frequency content of the signal is determined by a, and

set to a =
(

c1

1000Δx1

)2

. With the CEE method, we can

calculate Lp(x, t) at every instant t. Figure 2a shows
pn(x, t1) with t1 = (68Δx1/c1) s using Eq (10), for ρ2 =
2ρ1 with constant c and c2 = 2c1 with constant ρ. The
pressure is normalized as pn(x, t1) = p(x, t1)/|p̂(x, t1)|,
where p̂(x, t1) denotes the maximum value.
The operator Lpn(x, t1) is now calculated analytically,
Lpn(x, t1)an, using the CEE method, Lpn(x, t1)CEE ,
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and using the Fourier PS method, Lpn(x, t1)FPS . The
operators have been normalized as
Lpn(x, t1) = Lp(x, t1)/|L̂p(x, t1)an|. The chosen spa-
tial discretization Δx1 results in a sample frequency as
fs = c1

Δx1
. Figure 2b shows Lpn(x, t1) for the two differ-

ent cases. Figure 2c shows absolute error in Lpn(x, t1),
expressed by 20log10|Lpn(x, t1)an − Lpn(x, t1)CEE | for
the CEE method, and Fig 2d shows this absolute error
as a function of the frequency up to fs/2. The error
using the CEE method is, for the two cases considered,
very low and rather flat over the frequency band. The
error can be shown to be related to the level of p(x, 0) at
fs/2. The grid resolution in the Fourier method is equal
to the grid resolution in the CEE method apart from the
different sound speed case, where an equidistant grid in
the Fourier method is used. In the Fourier PS method
for the different density case, the operator L has been
evaluated in two steps; i.e. a subsequent calculation of
two first spatial derivatives. The error using the Four-
ier method is substantial compared to the CEE method,
and is very large around the media interface.
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Figure 2: Calculation of Lpn(x, t1): (a) analytical
normalized pressure pn; (b) normalized operator Lpn

from analytical, CEE and Fourier PS methods; (c)
20 log |Lpn(x)an − Lpn(x)CEE | and 20 log |Lpn(x)an − Lpn(x)F P S|;

(d) 20 log |Lpn(f)an − Lpn(f)CEE | and
20 log |Lpn(f)an − Lpn(f)F PS |.

4.2 Time-domain implementation

So far, the evaluation of the first operator of Eq (1)
has been discussed. For an efficient evaluation of the
second operator of Eq (1), use has been made of the k-
space method. This method uses the analytical solution
of the wave equation in the wave number-time (k − t)
domain and has been used in the Fourier PS method
before (e.g. [2]). We apply it here to the CEE method.
After multiplying Eq (1) by ψ±(ε, x) and integrating
over x we get:

[
k2

ρ
+

1

c2ρ

d2

dt2

]
P±(ε, t) = 0. (11)

The solution to this equation can be written as:

P±(ε, t) = A±(ε)ejc1k1t. (12)

After some algebra, we can write:

1

c2ρ

p(x, t+ Δt)− 2p(x, t) + p(x, t−Δt)

Δt2
(13)

=
∑
±

∫ 0

−∞

(
−
k2

ρ
sinc2 (c1k1Δt/2)P±(ε, t)

)
ψ±(ε, x) dε.

The left hand side of Eq (13) can be seen as a finite dif-
ference representation of the time derivative operator.
The difference between Eq (13) and a traditional second
order finite difference representation in time (known as
the leapfrog iteration) is the sinc2 (c1k1Δt/2) term at
the right hand side of Eq (13). In contrast to leapfrog
iteration, no error in the time stepping is introduced
by the k-space method, since Eq (12) is exact. Given
that c is constant in both media, the k-space method
is unconditionally stable [2]. The numerical time step
Δt is bounded by the Nyquist criterion as well, and has
here been chosen to be Δt = Δx1/(2c1). The time do-
main calculation is started with Eq (10) and t runs from
0Δt to 2500Δt. Figure 3a shows the analytical solution
at t = 1000Δt for the two cases considered above, i.e.
ρ2 = 2ρ1 with constant c and c2 = 2c1 with constant ρ,
showing a reflected and transmitted wave. The accur-
acy of the CEE k-space method, Eq (13), is studied by
comparing the analytical transmission coefficient with
the calculated transmission coefficient.

Tan =
2ρ2c2

ρ2c2 + ρ1c1

TCEE =
Ft (p(II, t))

Ft (p(I, t))
, (14)

where Ft is the Fourier transform with respect to time,
p(I, t) is the pressure of the incident wave recorded at
a position I with x < 0, and p(II, t) the pressure of
the transmitted wave recorded at a position II with
x > 0. Figure 3b shows Tan, TCEE and TFPS (calcu-
lated similarly as TCEE) for the two cases studied. The
accuracy for the CEE k-space method is fine, as expec-
ted. The accuracy breaks down close fs/2, where fs is
the sample frequency related to the spatial discretiza-
tion. The Fourier PS k-space method shows to be a low
frequency approximation of the correct solution (as also
shown in [3]).

The leapfrog iteration method is known to be dis-
persive. To display the accuracy of the CEE k-space
method regarding dispersion, the relative phase error εφ
using both methods is calculated by:
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εφ(f) = 100

(
Δφ−Δφan

Δφan

)
(15)

= 100

∣∣∣∣φ [Ft (p(II, t))]− φ [Ft (p(I, t))]− ωT

ωT

∣∣∣∣
where φ [y] the phase of y and T the travel time between
points II and I. Along with the relative phase er-
ror for the k-space method, the relative phase error
using the leapfrog iteration method (by omitting the
sinc2 (c1k1Δt/2) term in Eq (13)) is shown in Fig 3c,
using Δt = Δx1/(10c1). The results show that whereas
the phase error using the leapfrog method is around -
0.4 % at fs/2, the error using the k-space method is
negligible. The Fourier PS εφ results for the c2 = 2c1
case can be attributed to the fact that the medium in-
terface in this method is situated between two spatial
grid points.
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Figure 3: Results of time domain calculations: (a)
analytical normalized pressure pn(x, 1000Δt); (b)

transmission coefficient T from analytical, CEE and
Fourier PS methods; (c) relative phase error εφ, from
CEEk−space, CEEleapfrog , Fourier PSk−space, Fourier

PSleapfrog methods.

4.3 Slowly varying medium sound speed

The advantage of the CEE method over boundary dis-
cretization methods arises when the medium proper-
ties smoothly vary spatially. For smoothly varying me-
dium properties, the Fourier PS method will return a
good approximation of the second spatial derivative op-
erator, see e.g. [4]. Since the CEE method is based
on Fourier transforms, discontinuous media problems
with smoothly varying media properties are expected to
be well resolved using the CEE method for media with
piecewise constant properties. In this section, it will

be studied whether this is the case by varying the me-
dium sound speed c(x) smoothly in domain 2. Results
of calculations with the CEE and Fourier PS methods
will be compared to a second order finite difference time
domain (FDTD) method, which reads:

p(x, t+ Δt)− 2p(x, t) + p(x, t−Δt) (16)

=
Δt2c(x)2

Δx2
(p(x+ Δx, t)− 2p(x, t) + p(x−Δx, t))

The FDTD has been implemented with
fsFDTD = 16fsCEE Hz and ΔtFDTD = ΔxFDTD/(10c1),
with fs related to the spatial discretization. The FDTD
results up to fsFDTD/32 have a small amplitude and
phase error and will therefore serve as a reference. The
sound speed profile has first been chosen to be a shifted
and low pass filtered version of c2 = 2c1 (a first order
Butterworth filter with a cut-off frequency of fs/20 has
been used). Figure 4a displays the normalized sound
speed profile for this case, with cn(x) = c(x)/c1. The
time domain calculations were executed with initial val-
ues p(x, 0) as from Eq (10) with a = 2(fs/1000)2. Figure
4b shows the transmission coefficients from the FDTD,
CEE and Fourier PS calculations. For the latter two,
which are equal for this case, both the k-space method
and the leapfrog iteration in time have been calculated
for. Since c(x) increases in medium 2, the k-space method
has a more stringent stability criterion (see [2]), and
Δt = Δx1/(10c1) has been chosen for the k-space and
the leapfrog iteration method. The results show that
the error in the CEE and Fourier PS methods are small,
apart from frequencies close to the sample frequency, as
we have seen in the former section. In Fig 4c, the rel-
ative phase error is calculated, where the phase change
ΔφFDTD has been used as a reference. The relative
phase error in the k-space method is smaller than in the
leapfrog method, but not as small as in section 4.2. The
reason is that the Green’s function in k − t space, as
used in the k-space method, is not exact any longer.
As a second sound speed profile, we take the former
sound speed profile and add c1 to the values in medium
2, see second subplot of Fig 4a. From the T and relative
phase error results, we notice that the Fourier PS results
show similar deviations as for the single discontinuity as
in section 4.2. The error in T and relative phase error in
the CEE method are comparable with the errors in the
former sound speed profile case. Numerical tests indic-
ate that a more abrupt transition in the sound speed will
increase the required number of points per wavelength.

4.4 Numerical efficiency

The CEE method is developed to obtain an efficient
wave propagation computation through discontinuous
inhomogeneous fluid media. To indicate the efficiency
of the calculations in section 4.3, the computation time
from CEE and second order accurate FDTD methods
are compared. For a similar accuracy, the number of
points per wavelength in the FDTD was found to be
12 times larger than in the CEE method, while keep-
ing the same ratio Δt/Δx in both methods. For this
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Figure 4: Results of time domain calculations: (a)
normalized sound speed profiles cn(x); (b) transmission

coefficient T from analytical, CEE and Fourier PS
methods; (c) relative phase error εφ, from CEE and

Fourier PS methods.

1D problem, the ratio 12 also holds for the required
storage capacity of both methods. The number of op-
erations in the CEE method NCEE can be estimated
by NtCCEENxlog2(Nx), with Nt the number of time
steps, Nx the number of spatial points, Nxlog2(Nx) the
approximate number of multiplications for a FFT and
CCEE a constant.
For the number of operations in the FDTD method,
NFDTD, we can then write 12NtCFDTD12Nx. The ra-
tio NFDTD/NCEE was found to be 16 from the MAT-
LAB implementation, with Nx = 512. This ratio de-
pends on both Nx and the chosen numbers of points per
wavelength in both methods. As shown by Liu, Pseudo-
Spectral methods are even more rewarding for higher
dimensions [5].

5 Conclusions

To model wave propagation through discontinuous in-
homogeneous fluid media in the time domain, the use
of a continuum eigenfunctions expansion (CEE) can be
useful to calculate the spatial derivative operator of the
wave equation of the solution at every time step. The
solution is decomposed through the orthogonal set of
continuum eigenfunctions, and the spatial derivative op-
erator is taken in the transformed (wave number) do-
main. As for the Fourier Pseudo-Spectral (PS) method,
integral transforms can be evaluated by making use of
fast Fourier transforms, but in contrast to the Fourier
PS method, the used eigenfunctions account for the dis-
continuity of the media properties. Calculations for one
dimensional problems show that the continuum eigen-
function expansion method yields accurate results for

wave propagation in a two fluid problem, where dens-
ity and wave speed are discontinuous across the media
interface. Also, for an additional smoothly varying me-
dium property (here c), the CEE method was shown
to be accurate. The CEE, where slightly more than 2
points per wavelength are required, is computationally
faster and requires less storage than the FDTD method.
The CEE method applied to higher dimensions is cur-
rently under development.
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