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In this paper we present a comprehensive analytical model for the acoustic propagation in a thermo-
viscous fluids. Developement is done in two steps. First a complete model for air is realized and then a
generalized model is shown, applicable to a any fluid. A new set of differential operators is presented in
the course of this model. The analytical solution is derived from matrices of the system giving rise to
the eigenwaves. For simple radiation problems one must apply the sommerfeld criteria to discard those
eigenwaves which render the solution infinite. Classical quantities like pressure, temperature and the
particle velocities are obtained afterwards.

1 Introduction

The conventional acoustic radiation is presented with
the pressure variation in terms of the normal particle
velocity, the Euler’s equation. Temperture changes and
the shearing action of the fluid is neglected owing to its
influence just within the boundary layer. Such assump-
tion is valid in open spaces, but need be reconsidered in
closed spaces where the gaps might be of the order of
the boundary layers. A very initial work was introduced
by Gustav Kirchhoff in 1868 [1], where he made use of
the Navier-Stokes equation and Fourier Law of heat con-
duction to generate a model of propagation in thermo-
viscous fluids. Around this time, other domains such as
thermo-acoustic refrigration and engines produced re-
searches like [2] & [3]. In 50s and 60s some important
studies were made on the damping of machine vibrations
by thin films such as [4] & [5]. Work on miniaturized
acoustic sensors also made use of such models as seen
in [6] & [7]. Some relatively new researches from these
fields combined include [8], [9] and [10]. Only very few
of thses works could be termed comprehensive like [9]
and [10] with respect to the four fundamental factors,
namely, conductivity, viscosity, compressibility and in-
ertia. Simplifying assumptions are there nonetheless, in-
cluding zero pressure gradient perpendicular to the fluid
film, normal particle velocity considered zero against the
tangential velocity and the tangential differential opper-
ator considered zero against the normal differential op-
erator. In comparison our model does not take these
assumptions and caters for all the fundamental factors.
We present the single plate model here while the double
plate transmission is reserved for the conference.

2 Linearized Fundamental Equa-
tions

In this section are presented the fundamental equations
in linearized form. Therefore, (′) represents the first or-
der variation while (o) signifies the mean value. The
equations detailed are conservation of continuity, mo-
mentum, energy and entropy respectively. It is impor-
tant to note that Eq (4) & Eq (5) are mutually exclusive
and a complete system may be determined with any one
of them.
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Here ρ is density, ~u the particle velocity vector, u
′

τ the

amplitude of the tangential velocity given as
√

u′2
x + u′2

y ,
uz normal velocity, p pressure, µB bulk viscosity, µ co-
efficient dynamic viscosity, e energy, T temperature, λ
thermal conductivity and s entropy. The operators used
in Eq (1) to Eq (5) are defined by Eq (6).
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where kf =

√
k2

x + k2
y and kx and ky represent the plate

wavenumber in the x and y direction respectively and
therefore kf is the flexural wavenumber of the plate in
vacuum.

3 Thermodynamic Relationships
for Air

Using the equation of state, p = ρRT and the two prop-
erty rule, following relationships for air could be ob-
tained.

ρ
′
=

γ

c2
o

(
p

′
− β̂T

′
)

(7)

where γ is the ratio of the specific heats at constant
pressure and constant volume respectively, defined as
Cp/Cv, co is the adiabatic speed of sound in air and β̂
is ratio of the equilibrium pressure and the equlibrium
temperature at constant density defined as po/To. The
specific internal energy is given as,

e
′
= CvT

′
(8)

Using the definition of the specific heat at constant pres-
sure and the factors which have already been defined

Acoustics 08 Paris

8208



above, the entropy of the system is given as,

s
′
=

Cp

To

(
T

′
− γ − 1

γβ̂
p

′
)

(9)

4 General Thermodynamic Rela-
tionships for Fluids

In this section we will develope the general thermody-
namic relationships for any fluid. In order to realize this
we will make use of the two property rule again Using
the definition of isothermal compressibility, isobaric ex-
pansivity and the Maxwell’s relations, we may write for
mass density of the system,

ρ
′
= κρo

(
p

′
− α

κ
T

′
)

(10)

where κ is the coefficient of isothermal compressibility
and α is the coefficient of isobaric expansivity. Using the
first Tds relationship & the definition of specific heat at
constant voulume, we obtain the relationship for specefic
internal energy of the system,

e
′
= L1p

′
+ L2T

′
(11)

where L1 & L2 are defined as,

L1 =
κpo − αTo

ρo

L2 =
ρoκCv + (αTo − κpo)α

ρoκ

Finally using the definition of α, the isobaric expansiv-
ity, we obtain the entropy of the system,
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′
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5 Eigenwaves for Air

We search for a solution of the form as given by Eq (13),
p

′
= Aejωtejkxx+jkyy+jkzz

T
′

= Bejωtejkxx+jkyy+jkzz

u
′

τ = Cejωtejkxx+jkyy+jkzz

u
′

z = Dejωtejkxx+jkyy+jkzz

(13)

where A, B, C and D are the arbitrary constants rep-
resenting the unknowns of the system, ω is the angular
frequency and kz denotes the reduced wavenumber relat-
ing the acoustic wavenumber k = ω/co with the flexural
wavenumber of the plate kf . Using Eq (13) in the set
Eq (1) to Eq (5) (excludig Eq (4)), Eq (7) & Eq (9),
we obtain the homogeneous matrix for acoustic propa-
gation in thermo-viscous air. Setting the determinant of
this matrix equal to zero and solving for kz returns six

eigenwaves as shown in Fig. 1 where the real and imagi-
nary parts of the eigenwaves are shown. We now invoke
the Sommerfeld criteria on these eigenwaves to retain
kz1, kz3 & kz6 as the valid finite eigenwaves of acous-
tic propagation problem in an infinite thermo-viscous
medium

Figure 1: (a) Real & Imaginary Parts of the
Eigenwaves kz1 & kz2. (b) Real Parts of the

Eigenwaves kz3, kz4, kz5 & kz6. (c) Imaginary Parts of
the Eigenwaves kz3, kz4, kz5 & kz6.

6 Results for Air

The retained eigenwaves are resubstituted into the sys-
tem matrix shown in Appendix A to render three matri-
ces corresponding to the eigenwaves 1, 3 and 6 respec-
tively. A homogeneous solution to these matrices may
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be obtained by normalizing any one of the arbitrary con-
stants in §5 by setting it equal to 1. For three matrices,
we will have three sets of solutions in terms of A, B &
D. From these solutions we may write our final system
shown by Eq (14).

B1 B3 B6

1 1 1
D1 D3 D6

 Γ1

Γ3

Γ6

 =

0
0
U

 (14)

Note that in the above equations C1 = C3 = C6 = 1. The
unknowns of Eq (14) are the arbitrary constants Γ1, Γ3

& Γ6 which depend on the boundary conditions at the
air-plate interface and are determined by them. These
are shown with the help of Eq (15).

T
′
(z = 0) = 0

u
′

τ (z = 0) = 0
u

′

z(z = 0) = Uej(kxx+kyy)

(15)

The instantaneous temperature difference at the wall is
zero and so is the amplitude of tangential velocity trans-
lating a no-slip condition at the wall. The normal parti-
cle velocity at the interface is equal to the normal plate
velocity. The solution of the system permits us to deter-
mine the pressure, temperature, normal and tangential
velocities and the radiation factor as demonstrated in
Fig. 2

7 Results for Water

Acoustic radiation in water is modeled using the gen-
eralized relationships of §4 and in particular Eq (10) &
Eq (12). The system matrix is shown in Appendix B.
Following the steps as outlined in §5 & §6, we obtain
Fig. 3 for water.

8 Discussion

The data used for air is; To = 300 K, po = 101325 Pa, ρo

= 1.1797600 kg/m3, co = 347.4 m/s, µ = 0.000018199
kg/ms, λ = 0.026197599 W/mK, Cp = 1005.458757
J/kgK, γ = 1.4, β̂ = 337.5 Pa/K, kx = 1, ky = 1, µB

= 1/3µ & U = 0.1 m/s. From Fig. 2 (a) & (b) we
may deduce the thermal and viscous boundary layer re-
spectively. Compared to the respective analytical form
δth =

√
2λ/ρoωCp and δvs =

√
2µ/ρoω at the criti-

cal frequency (fc = co

√
k2

x + k2
y/2π), the results δth =

300 µm and δvs = 250 µm are in good agreement. In
Fig. 2 (e) a small circle is shown around the critical
frequency. In an ideal fluid, the radiation factor σ is
strictly zero, but in a thermo-viscous fluid we find a fi-
nite but relatively smaller value around the circle shown.
The data used for water is; To = 300 K, po = 101325

Figure 2: (a) Pressure. (b) Temperature. (c)
Tangential Velocity. (d) Normal Velocity. (e)

Radiation Factor.
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Figure 3: (a) Pressure. (b) Temperature. (c)
Tangential Velocity. (d) Normal Velocity. (e)

Radiation Factor.

Pa, ρo = 996.55 kg/m3, co = 1501.9 m/s, µ = 8.5382e-3
kg/ms, λ = 0.61032 W/mK, Cp = 4.1806e3 J/kgK, κ
= 0.45106e-9, kx = 1, ky = 1, µB = 3.4µ & U = 0.01
m/s. From Fig. 3 (a) & (b) we may deduce the ther-
mal and viscous boundary layer respectively. It may be
noted that the thermal boundary layer is much smller
than the viscous boundary layer. In Fig. 3 (e) a small
circle is shown around the critical frequency to mark
some radiation in the usually non radiating zone which
is very small but exists nonetheless. The presence of
thermo-viscous effects cause a slight radiation tendency
in the non-radiating zone which is marked by region be-
low the critical frequency. This fact could be confirmed
with Fig. 2 (d) & Fig. 3 (d) where the normal velocity
is seen to decrease below the critical frequency which
means an increase in the radiation. It could be demon-
strated that using the same model on the double wall
acoustic transmission we may obtain interseting gains in
transmission loss as much as 5 dB. This demonstration
is kept for the conference.
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Appendix A

The homogeneous system matrix for air is obtained by substituting the thermodynamic relationships for air in the
linearized fundamental equations. Here MU denotes the quantity µB +µ/3. Once again we note that Eq (4) (energy)
& Eq (5) (entropy) are mutually exclusive and so any one of them could be used. We employ Eq (5) as it generates a
simple matrix. The numerical results would be exactly the same if had chosen Eq (4).

P =


j γω

c2o
j γβ̂ω

c2o
jkfρo jkzρo

jkf 0 jωρo +MU(k2
f ) + µ(k2

f + k2
z) MU(kfkz)

jkz 0 MU(kfkz) jωρo +MU(k2
z) + µ(k2

f + k2
z)

j
ωρoCp(γ−1)

γβ̂
−{jωρoCp + λ(k2

f + k2
z)} 0 0

 (A-1)

Appendix B

The homogeneous system matrix for water is obtained by substituting the general thermodynamic relations for fluids
into the linearized fundamental equations.

P =


jωκ −jωα jkf jkz

jkf 0 jωρo +MU(k2
f ) + µ(k2

f + k2
z) MU(kfkz)

jkz 0 MU(kfkz) jωρo +MU(k2
z) + µ(k2

f + k2
z)

jωαTo −{jωρoCp + λ(k2
f + k2

z)} 0 0

 (B-1)

The unknowns of both these systems are the arbitrary constants A, B, C and D. These systems are used to find the
eigenwaves as well as the arbitrary constants. The arbitrary constants are found by normalizing any one of them, i.e.,
setting it equal to one. For numerical stability reasons, this is chosen as C.
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