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The analysis of texture of side scan sonar images plays a key role for the interpretation of the geology of the 
seafloor. In this paper we examine the classification of different seafloors based on the analysis of texture of side 
scan sonar images. For this purpose, we apply the Two Dimensional Discrete Wavelet Transform on side scan 
sonar images obtained from three different seafloor types, namely, sand ripples, rocks and sands, and then we 
examine the statistics of the corresponding wavelet coefficients. The observed probability density functions 
(PDFs) of the coefficients are modelled using the Symmetric Alpha Stable distribution. The parameters of the 
fitted model are used to classify the sid

 

e scan sonar images according to well known cluster analysis techniques. 
The preliminary results are promising. 

Introduction

 images is an important task in various sea 

e 
segmentation, classification and characterization (Fig. 1).  

1

A growing need for fast and accurate mapping of the top 
sea floor sediments for economic, scientific and military 
purposes has led to the development of various acoustic 
survey methods. One of the most widely used acoustic 
methods is by using the side scan sonar [1]. Usually human 
intervention is important in segmenting and classifying a 
side scan sonar image. Perhaps, this is the most reliable and 
accurate method of image segmentation and classification, 
since the human visual system is very sophisticated and 
proper for this task. However, modern side scan sonar 
acquisition methods create a huge amount of image data for 
which manual analysis would be prohibitively expensive 
and time-consuming. Therefore, the automatic classification 
of side scan sonar
bottom surveys.  
Typical stages of sea bottom mapping includ

Segmentation Classification Characterization

 
Fig. 1 Stages of sea bottom mapping 

 sediments. 

een 

 have used. In Section 4 we present 
the statistical analysis of the wavelet coefficients and the 
clustering results. Finally in Section 5 the main conclusions 

escription of 

ew data set is derived that is 

sform of one dimensional signals coming from side 

sis is done by 

f several neighbor pixels is taken into 

fail if used alone since they 

hastic process. Markov Random Fields 
RF) have been successfully used in this direction [8]. 

s to the problem have been 
ggested [9].     

 

Segmentation involves the partitioning of a sonar image 
into homogenous and meaningful regions. Once the image 
is segmented into regions of different textures, the next step 
is to classify these regions using real-world sediments 
(classes). Finally, the characterization of the classified 
regions is achieved by finding important parameters, such 
as geotechnical properties, that concern these
This paper focuses on the classification stage.  
Various methods have been proposed for the analysis of 
textures of side scan sonar images. All of them depend on 
the extraction of certain features that reduce the 
dimensionality of the problem and form a characteristic 
signature of the image that can be used for the classification 
procedure. In the present work we apply the 2D Discrete 
Wavelet Transform to decompose side scan sonar images 
and then we analyze the statistical behavior of the wavelet 
coefficients by employing Symmetric Alpha Stable models. 
We have chosen side scan sonar images containing three 
different types of sea bottoms, namely, sand ripples, rocks 
and sand. These bottoms are frequently encountered in sea 
bottom surveys and it is important to distinguish betw
them since they bear different geotechnical properties. 
The paper is organized as follows: Section 2 contains a 
brief overview of the various algorithms used to describe 

image texture in side scan sonar images and gives the 
mathematical background that is used later. In Section 3 we  
describe the data that we

of this work are drawn. 

2    Background 

During the years, a variety of methods have been proposed 
for deriving features for the mathematical d
texture in side scan sonar images. These include the use of 
linear transformations, statistical features from the image 
pixels and by using a model-based approach.  
By applying linear transformations to an image (e.g. 
Fourier transform, Wavelet transform, Gabor, etc) we get 
new features that can be useful in describing texture. After 
the transformation of an image with properly chosen 
decomposition functions, a n
sometimes smaller than the image itself. This is done in 
order to decrease the dimensionality of the problem and 
“expose” the image texture.  
One of the first transform-based techniques used for 
classification of sonar images relates to the Fourier 
Tran
scan sonar [2]. More techniques followed mainly based on 
the two dimensional Fourier and Wavelet Transforms [3, 
4]. 
In the statistical approach the pixel statistics of an image 
are considered. The simplest statistical analy
employing first-order statistics of the gray-level histogram 
of an image [5].  The gray levels are directly related to the 
backscattering amplitude of local sediments. 
One of the most important statistical methods is the Gray 
Scale Co-occurrence Matrix method [6] that uses the 
second-order statistics of an image. Here, the joined gray-
level histogram o
account. This technique was successfully introduced in side 
scan sonar images in order to classify different sedimentary 
sea bottoms [7].  
Statistical methods sometimes 
are susceptible to noise for example because amplitude 
changes due to variations in local bathymetry which is 
irrelevant to sediment texture.  
The model-based methods rely on fitting an analytic 
function to the texture in order to capture some texture 
characteristics. Usually this function is based on a two-
dimensional stoc
(M
Also, fractal approache
su
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2.1 Two Dimensional Wavelet Transform 

In this work the classification of side scan sonar images is 
based on the observation that the texture of these images 

avelet Transform. The 
velet 

C(s, px, py) is the decomposition coefficient of image 
 at scale s and position p by using the wavelet 

can be characterized by the statistical behavior of their 
wavelet subband coefficients.  
Research on the human texture perception suggests that the 
human eye uses some kind of multi-scale linear 
decomposition in order to analyze an image [10].  Such 
linear multi-resolution decomposition can be achieved with 
the help of the Two-Dimensional W
equation for the Two Dimensional Continuous Wa

ransform (2D CWT) case is [11]: T

 dydxyxyxfppsC
yx ppsyx ),(),(),,( ,   (1) 

Where 
f(x, y)

yx pps. .   

The wavelet itself is given by: 

),(),(,, sss
yxpps yx

1 pypx yx        (2) 

Where  is the mother wavelet from which all the wavelets 

ows and the rest along the columns of the 
image to be transformed and (b) sub-sampling in ev

metric Alpha Stable (SaS)

butions are called Symmetric 
 defined by its 

ch

used in the decomposition described by Eq.(1) are derived 
from.  
The 2D-Discrete Wavelet Transform (2D DWT) allows the 
implementation of the CWT in computers and it requires 
two basic procedures [11]: (1) the cascading of high and 
low-pass digital filters and (2) the subsampling of each 
filter output. The decomposition of an image is realized by 
applying 1D Wavelet Transforms separately along the 
horizontal and vertical dimensions of the image. Therefore, 
for the realization of a 2-D Wavelet Transform of one stage 
we need (a) Low and High -pass filters, two of which are 
applied along the r

ery 
filter output [11]. 

2.2 The Sym
distribution

Alpha Stable distributions [12] are a family of statistical 
distributions that are defined by four parameters a, ,  and 
. In particular    parameters define the shape and  

and  are related to the scale and position of the 
distribution. Parameter  (also called the characteristic 
exponent) defines the shape of the tails of the distribution. It 
lies in the range [0, 2]. For =2 the distribution reduces to a 
Gaussian distribution with variance  = 2 2 and mean  and 
the parameter  has no effect. The parameter  (also called 
index of skewness) is related to the symmetry of the 
distribution and lies in the range [-1, 1]. When =0 the 
distribution is symmetrical around the location parameter  
(-  <  < + ). Such distri
Alpha Stable (SaS). A SaS distribution is

aracteristic function [13]: 

)exp()( aa ttit      (3) 

a,  and  being the SaS distribution parameters. In our case 

he SaS distribution. It is demonstrated 

the observed distributions are symmetric around zero so  = 
 = 0 (Fig. 2). 

The symmetric stable densities possess many features of the 
Gaussian distribution. They are smooth, unimodal, 
symmetric with respect to the median and bell–shaped. 
However, the main characteristic of a non–Gaussian stable 
probability density function is that its tails are heavier than 
those of the normal density. As a result the stable law is 
regarded suitable for modeling signals and noise of 
impulsive nature. The SaS distributions have also proven to 
be efficient in describing the content of many texture 
images [14] and acoustic signals [15]. Also, at present 
work, it is demonstrated that this family of distributions is 
also appropriate for the classification of side scan sonar 
images. The classification is achieved by modeling the 
Probability Density Function (PDF) of the image 2D-DWT 
coefficients using t
that the parameters  and  of the resulting SaS depend on 
the image texture.  

 
Fig. 2 SaS distributions for various  values ( =1,  = 0). 

3 The data 

We used images from two different data sets. The first one 
was provided by NATO Underwater Research Centre 
(NURC) and the other one by L3 Communications-Klein 
Associates Inc. Both data sets were ground truthed. All 
selected images depict homogeneous regions of a single 
texture in grayscale. The size of each image is 128 128 
pixels. For our tests we used 16 images from each class 
(sand ripples, rocks and sand).  Figure 3 depicts typical 

ages of sand ripples (columns 1 and 2), rocks (column 3) 
nd sand (column 4) from both data sets.  

 
 

im
a
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Fig. 3 Typical images from our data sets.

4 Statistical analysis of the wavelet 
coefficients

Several d und that 
the Daubechies family gave the best results for our  
purposes. Among all, we mainly used the first (db1) and 

igure 4 depicts three typical PDFs of 
ts of images from our data set.   In all 

ifferent wavelets were tested and it was fo

fourth (db4) members of the family. The wavelet 
coefficients under consideration are these of the third 
decomposition level. F
the wavelet coefficien
three diagrams the points correspond to the observed PDF 
of the coefficients, while the solid line is a Gaussian 
approximation.  These diagrams clearly indicate that the 
PDF can be modeled as Gaussian only for images of pure 
sand.  For sand ripples and rock images, the resulting PDFs 
exhibit heavier tails than the normal distribution, indicating 
that the SaS is a more suitable model for these seabottom 
classes.  
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Fig. 4 PDFs of decomposition coefficients for three 

different types of bottoms (sand ripples, rocks and sand 
respectively). 

Figures 5 and 6 depict the results of the SaS modeling. The 
axes in the figures are the  and  parameters of the SaS 
distribution that models the PDF of the wavelet coefficients 
of the images. Thus, each point in the two diagrams 
represents a single image, while its coordinates are the 
corresponding ( , ) parameters. The Koutrouvelis method 
[16, 17] was used in order to estimate these parameters. It is 
clear that the three seafloor types under consideration form 
three different clusters. The cluster centroids (star symbols) 
are calculated using the k-Means algorithm [18]. 

Sand Ripples 

Pure Sand 

Rocks 

 
Fig. 5 SaS modeling of the third level wavelet coefficients 
of side scan sonar e Klein data set using the 
db4 wavelet (squares for sand ripples, triangles for rocks & 

circles for sand). 

 images from th
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Fig. 6 SaS modeling of the third level wavelet co

of side scan sonar images from the NURC data set using t
db1 wavelet (squares for sand ripples, triangles for rocks & 

circles for sand). 

From

corres
with the observed PDF r is 

is results in a large spread of the 

the statistical behavior of wavelet 
decomposition coefficients. The images that we analyzed 

mmon sea 
.  

ts  

 use of Symmetric Alpha Stable statistical 

) for better classification results. 

e 
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 The development of a systematic approach to the wavelet 
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 figures 5 and 6 we can draw the following
conclusions:  
 Images of pure sand concentrate near =2 which 

ponds to the Gaussian case. This is in accordance 
of Fig. 3.  The pure sand cluste

 

well formed with a small spreading in comparison to the 
other two seafloor types   
 Images with sand ripples exhibit significant variations in 

the ( , ) plane. This is due to the fact that sand ripples 
images come with variable texture (Fig. 3) which depends 
mainly on the wavelength and the orientation of the sand 
waves. As expected, the wavelet transform is sensitive to all 
these characteristics and th
corresponding points on the (a, ) plane. This could 
potentially increase the probability of error in an automated 
classification system but on the other hand, the observed 
spreading could give information about the characteristics 
of the sand ripples.  
 Rock images wavelet statistics lie in between sand and 

sand ripples statistics. If the sonar image is not clear 
enough,   the probability of an erroneous decision may be 
significant. This is due to the fact that the tails of the 
resulting PDF will not be heavy enough and rock could be 
classified as sand.  

5 Conclusions and future work 

In this paper we have attempted to classify side scan sonar 
images based on 

contained characteristic textures from three co
bottoms namely sand ripples, rocks and pure sand
The suggested method of side scan sonar image 
classification is outlined as follows: 
1. Image segmentation: The image is segmented according 

to different textures. This is accomplished by using well 

known segmentation algorithms such as the GLCM 
method. 

2. Calculation of the wavelet coefficients of the single 
texture images up to an optimum level of decomposition.  

3. Calculation of the PDF of the wavelet decomposition 
coefficien

4. Estimation of the ( , ) parameters of the closest SaS to 
the observed PDF.  

Although more analysis is required, the initial results 
suggest that the
models can be a promising tool in classifying side scan 
sonar images.  
For the further development of the above scheme our 
investigations will move towards the following directions: 
 The use of linear combination of SaS models (SaS 
mixtures [19]

 The use of advanced clustering algorithms (such as 
spectral clustering) for the definition of the clusters. 

 The development of a mathematical framework for the 
computation of the probabilities of error in th
classification procedure 
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