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A numerical model has been developed to simulate the oscillatory dynamics and the translational motion of both 
free and encapsulated bubbles in an ultrasound field. The model allows for the compressibility of the 
surrounding liquid and the bubble shell, which makes it possible to model the bubble dynamics at high acoustic 
pressures. Simulations can be carried out either by solving Rayleigh-Plesset-type equations, or in the 
hydrodynamic approximation taking into account the rheological properties of the liquid and the shell, or by a 
combined method. In the latter case, the gas pressure at the bubble surface, which is found from the gas-dynamic 
problem, is used as an input parameter for Rayleigh-Plesset-type equations at every time layer. The resulting 
radius of the bubble is then used as the boundary condition for the gas-dynamic equations. The model is a handy 
and flexible tool to investigate the effect of different factors on the oscillatory dynamics of the bubble, such as 
the thickness of the bubble shell, the rheological properties of the shell, and the translational displacement of the 
bubble. Using the developed model, the resonance frequency and translational displacement of contrast agents 
were numerically estimated. 

1 Introduction 

The wide application of ultrasound contrast agents in 
medicine [1] and progress of manufacturing techniques of 
new materials for encapsulating shells have given rise to 
intensive theoretical, numerical and experimental 
investigations in this field [2-3]. Of special interest are 
investigations on the effect of rheological behavior of shell 
materials on the radial dynamics of contrast agents in an 
ultrasound field. Depending on their material, encapsulating 
shells can exhibit the properties of a viscoelastic solid 
(KelvinVoigt solid), a viscoelastic fluid with stress 
relaxation (Maxwell fluid), as well as properties whose 
rheological law is still not understood. Buckling of lipid 
monolayer coatings is an example [4]. In [5], a model for 
large-amplitude oscillations of thin-shelled microbubbles 
has been developed. Theoretical analysis of small-
amplitude oscillations of encapsulated bubbles with shell 
thickness exceeding 15 nm was carried out in [6]. The 
purpose of the present paper is to develop theoretical and 
numerical models that make it possible to examine different 
scenarios for the behavior of free and encapsulated bubbles 
in both small- and finite-amplitude ultrasound fields, taking 
adequate account of existent physical processes and to 
study the influence of rheological properties of a shell on 
the oscillatory dynamics and translation displacement of a 
ultrasound contrast agent. 

2 Theoretical model 

2.1 Model description 

Depending on aims assigned, the proposed model allows 
one to carry out simulations in different ways. First, one 
can use one of systems of Rayleigh-Plesset-type equations 
built into the model. Second, one can make use of a 
combined method and simulate, for example, the gas flow 
within a free or contrast agent bubble using the gas-
dynamic equations. In this case, the gas pressure at the 
bubble surface resulting from the gas-dynamic problem is 
an input parameter for Rayleigh-Plesset-type equations and 
the resulting radius and velocity of the surface of the bubble 
are then boundary conditions for the gas-dynamic 
equations. Finally, the third possibility is to model the gas 
dynamics inside the bubble, the dynamics of the shell if it is 
present, including a multilayer one, and the dynamics of the 

surrounding liquid using the hydrodynamic equations for a 
compressible medium and taking into account plasto-
elastic, viscous, and even more complicated rheological 
properties of the encapsulating shell and the surrounding 
liquid. If a Rayleigh-Plesset-type equation is used, the gas 
motion is described by a polytropic equation, normally in 
the adiabatic approximation. The surrounding liquid is 
assumed to be compressible with a barotropic equation of 
state, such as the empiric Tait equation. It is also supposed 
that the surrounding liquid is at constant temperature and 
behaves as a Newtonian or a more complex fluid. The shell 
of the bubble is also at constant temperature, can be either 
compressible or incompressible, and its rheological 
behaviour can follow either a fluid or a solid. Mass transfer 
between the gas and the surrounding liquid (or the 
encapsulating layer) is assumed to be absent. Let us now 
consider the mathematical formulation of the problems, 
which is a set of ordinary differential equations and partial 
differential equations. 

2.2 Rayleigh-Plesset-type model 

In a free bubble case, the radial oscillation is calculated 
using Rayleigh-Plesset-type equations which are 
represented as a system of two ordinary differential 
equations of first order. The common form of the equations 
can written as 

 ( ), , , ,n nv F R v X Y t=& ,  Rv &= , (1) 

where ν is the radial velocity of the bubble surface, the over 
dot denotes the time derivative, R is the time-varying radius 
of the bubble, Xn is a set of parameters that describe the 
properties of the media such as viscosity, initial density, 
surface tension, sound speed, etc., Yn is a set of parameters 
that describe the properties of the ultrasound field such as 
amplitude, frequency, etc., t is time. 
As the main model of radial oscillation for contrast agents, 
which also takes into account translation, we use the model 
described in [7]. It can be represented as 

 ( ), , , , , , , , ,x i i n nv F R R v v D D X Y x tδ= && , Rv &=  (2) 

 ( ), , , , , , ,x x n n xv F R R v v X Y t v xδ= =& & &  (3) 

 ( ), , , , ,i i nD F D R v v X=& &  (4) 

where dR is the shell thickness, νx is the translation velocity 
of the contrast agent, the function Di is defined rheological 
behaviour of a medium, the subscript i = S for shell or L for 
surrounding liquid, x is the translation displacement of the 
contrast agent. 
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2.3 Hydrodynamic model 

As the problem under consideration is one-dimensional, it 
is reasonable to solve it using the Lagrangian method. The 
continuity equation, written in Lagrangian mass 
coordinates, for the case of spherical symmetry, and with 
respect to density per unit spatial angle, takes the form [8] 
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where ρ and u are the density and the velocity of the gas, 
shell or surrounding liquid, respectively, and the relation 
between the Euler and the mass coordinates is given by 
dm = ρr2dr. The equation of motion in the Lagrangian 
coordinates is written as 
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where p is the pressure, Srr is the radial component of the 
stress deviator, Srr = 0 for the gas. The energy equation in 
this case is given by 
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where ε is the internal energy per unit mass. 

2.4 State and rheology equations 

To close the systems of Eq.(1), Eqs.(2)-(4), or Eqs.(5)-(7), 
state equations for the gas inside the bubble, the ambient 
liquid, and the bubble shell should be specified. Our model 
allows one to apply different variants of such equations. 
The gas motion can be described by the state equation of 
ideal gas, the Van der Waals equation, or a tabular equation 
of state. For the ambient liquid, the hydrodynamic equation 
of a compressible fluid can be used, as well as the empiric 
Tait equation of state or different tabular equations of state. 
Similar equations can also be used for the bubble shell. The 
choice of a specific set of state equations is determined by 
extreme values of gas-dynamic parameters that are 
achieved under conditions of interest. 
To close the systems of Eqs.(2)-(4), or Eqs.(5)-(7), 
rheology equations for the surrounding liquid, and the 
bubble shell should be specified. For a viscoelastic plastic 
solid, Srr and the viscous stress tensor qrr are given by [9] 
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where μi is the shear modulus and ηi is the shear viscosity 
for the liquid or the shell. If |Srr|¥2/3Y0, than  

 ( )0
2 ,
3rr rr rrS Y sign S q= ⋅ +  (10) 

where Y0 is the yield stress. For a viscoelastic fluid, Srr is 
specified by the Oldroyd equation [10] 
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where urr = ∂u/∂r denotes the radial component of the rate-
of-strain tensor, λi1 is the relaxation time and λi2 is the 
retardation time. For a viscoelastic fluid of the Maxwell 
model, Srr is specified by  

 2rr
iM rr i rr

S S u
t

λ η∂ + =
∂

, (12) 

where λiM is the relaxation time. For a viscoelastic solid, Srr 
is specified by the Kelvin-Voigt equation 

 ( )2rr S rr SV rrS uμ ε λ= + , (13) 

where εrr is the radial component of the strain tensor, λSV is 
the retardation time for a shell. 

3 Numerical model 

3.1 Solving the systems of ODE 

To solve systems of Eq.(1) or Eqs.(2)-(4), our model uses 
different calculation methods. For example, when these 
systems are solved in combination with the gas-dynamic 
equations, the Euler methods can be applied as a 
consequence of small time step used by the gas-dynamic 
equations. For more complicated cases, the Runge-Kutta-
Gill method with accumulating error checking and 
automatic time step selection can be applied [11]. At mean 
accuracy of solution, the best result is reached using the 
Runge-Kutta method based on Dormand’s and Prince’s 
formulas with automatic step length control [12]. The set of 
methods used for solving ODE can be widened, which 
allows one to control the accuracy of solutions and the 
validity of results obtained. 

3.2 Solving the systems of 
hydrodynamic equations 

The hydrodynamic equations for the gas inside the bubble, 
as well as for the bubble shell and the ambient liquid, are 
solved by the completely conservative method described in 
[13]. The calculation of the stress tensor deviators 
describing the rheological behaviour of the shell and the 
ambient liquid is carried out using the technique proposed 
in [9]. As the solved system of equations is implicit, the 
solution was found by means of iterations, the termination 
criterion being the convergence condition of total energy 
for all points of the area under consideration. 

3.3 Capabilities of the model and its 
notification 

To establish the correspondence between a result and a 
scenario that was used to obtain that result, the following 
notation of the model scenarios is introduced: MNI

T(A). 
The first letter is always М, which denotes “Model”. N can 
be 0, 1, or 2. 0 means that the result was obtained using a 
model based on a Rayleigh-Plesset-type equation. 1 denotes 
that the combined method was used, where the gas flow 
inside the bubble is calculated by the gas-dynamic model 
and the radius of the bubble is calculated by a Rayleigh-
Plesset-type equation. Finally, 2 designates that all results 
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were obtained by the hydrodynamic simulation. The 
subscript I can be B, S, or M. B denotes that the dynamics 
of a free bubble is considered, S indicates an encapsulated 
bubble, and M denotes that the bubble shell is multilayer. If 
the superscript Т is present, that means that the calculation 
was made taking into account translation. The model 
author’s name or its abbreviation can be given in the 
parentheses. Thus, M1S(D) denotes that the results were 
obtained for an encapsulated bubble taking into account the 
gasdynamic flow inside a bubble, and the radial oscillation 
was calculated by the Doinikov model [7]. 

4 Numerical simulations 

4.1 Resonance frequencies 

An example of the calculation of translational displacement 
of a contrast agent bubble for different driving frequencies is 
given in Fig.1. The translational displacement is shown as a 
function of resting bubble radius for five frequencies. The 
simulation was carried out using the model M0S

T(D). The 
shell thickness is assumed to be constant and equal to 2 nm, 
the shell density is 1100 kg/m3, the pulse duration is 20 
cycles, and the frequencies are 1.5, 2, 2.5, 3, and 4 MHz. 
The ambient liquid is water at the atmospheric pressure. The 
acoustic pressure amplitude is 200 kPa. The viscosity of 
water ηL is 0.001 Pa·s, the shell viscosity ηS is 1.0 Pa·s, and 
the shell relaxation time λS1 is 1.25·10-8·s. In addition, marks 
on each curve show points that correspond to resonance 
radii calculated by two different methods for each 
frequency. Triangles show resonance radii that are 
calculated on the basis of the resonance frequency of a free 
bubble. Circles represent resonance bubble radii that are 
determined from oscillation power plots. The algorithm of 
this approach was proposed in [7]. For a specified driving 
frequency, the equilibrium bubble radius is determined at 
which the oscillation power function 

 ( ) ( )2
0 00

, 1/ ( ) / 1
T

W f R T R t R dt= −∫  (14) 

where Т is the duration of the imposed acoustic pulse, 
reaches a maximum. 

 
Fig.1 Translation displacement as a function of resting 

bubble radius. 

Comparison between the radii of contrast agents for which 
the maximal displacement occurs at a given frequency, and 
the resonance radii marked on the curves shows that the 
translational displacement can also be a measure that 
determines the resonance frequency of a contrast agent. 

4.2 Thick shells 

In order to study the effect of rheological properties of a 
shell on the oscillatory dynamics and translational 
displacement of a contrast agent, calculations were made 
for various rheological models. The simulation was carried 
out using the model M2S

T. The Maxwell fluid model, 
Eq.(12), the 3-constant Oldroyd model, Eq.(11), and the 
elasto-plastic model, Eqs.(8)-(10), were used. As a contrast 
agent, an air bubble with radius R0 = 1 μm and a shell of 
thickness dR0 = 0.1 μm, density ρ0S = 1100 kg/m3 and shell 
viscosity ηS = 0.01 Pa·s was taken. The parameters of the 
surrounding liquid were the same as in the preceding tasks. 
The oscillation dynamics of the contrast agent is shown in 
Fig.2 for three cycles of an ultrasound signal with a 
frequency of 2 MHz. In the Maxwell model, shown by the 
solid line, the relaxation time lSM is 10-9s. The relaxation 
times for the Oldroyd model were set to be equal to 
lS1 = 10-8s and lS2 = 10-11s. In Fig.2, this model is shown 
by the dotted line. Finally, the dashed line represents the 
elasto-plastic model with the shear modulus G = 108Pa and 
the yield stress Y0 = 0.7 MPa. 

 
Fig.2 The time-dependent radius of a contrast agent for 

three variants of rheological laws. 

The behavior of the contrast agent with the shell described 
by the Maxwell and Oldroyd models is virtually identical. 
However, the translational displacement shown in Fig.3 
exhibits a difference in their dynamics. The elasto-plastic 
shell leads to smooth small-amplitude oscillations of the 
contrast agent (see Fig.2) and as a consequence to the 
smallest translational displacement among all the tested 
variants (see Fig.3). 
Calculation was also performed for a shell described by the 
Voigt solid model. However, on the scale shown in Fig.2, 
oscillations in this case are unnoticeable, and the time 
dependence of the radius is just a straight line. A similar 
result is also obtained for the elasto-plastic shell if the 
ultimate strength of the shell material exceeds 1 MPa. 
Figure 3 displays the dynamics of translational 
displacement of contrast agents for the same variants of 

Acoustics 08 Paris

3374



 

computation. It is seen that the observed difference in the 
oscillatory dynamics due to different rheological properties 
of the shells results in a considerable difference in 
displacement. 

 
Fig.3 Simulated translational displacement as a function of 

time for three cycles of an ultrasound signal. 

For the model parameters which were used in the 
calculations, the largest displacement is reached for the 
Maxwell fluid shell (solid line). Whereas the smallest 
displacement is observed for the elasto-plastic shell (dashed 
line). However, by varying the model parameters, one can 
obtain other ratios between translational displacements. 
This fact suggests that one can formally select such 
parameter values that any model can be fitted to 
experiment. Therefore, to get plausible results, it is 
important to estimate the model parameters from 
experimental data. 

4.3 Thin shells 

Of special interest are currently contrast agents with 
ultrathin monolayer lipid shells. Description of the 
properties of such shells is complicated as the shells may 
exhibit different aggregative states at the water-air 
interface. Indeed, at strong rarefaction, they behave as a 
perfect two-dimensional gas which at compression 
demonstrates the properties of a stretched liquid film. Even 
stronger compression leads to a condensed liquid film and 
finally results in a virtually incompressible solid condensed 
state [14]. Further compression leads to shell buckling. To 
describe such a shell, it is natural to assume that its 
behavior is smoothly changing from a gas state to a liquid 
and then solid state. During this process the surface tension 
and the shell viscosity will undergo corresponding changes. 
To investigate the suitability of different rheological models 
to a lipid shell, three variants of calculation were carried 
out. In the first variant, the Maxwell fluid model was used, 
in the second, the Voigt solid model, and the third variant 
was a combination of these two models and was based on 
the above described mechanism of transformation of lipid 
monolayers. Let us assume that the rearrangement of a 
monomolecular lipid layer is realized by a smooth 
transition from a solid condensed state to a liquid film and 
then backwards. As in the case of spherical symmetry the 
rarefaction occurs at the expansion of a contrast agent, the 
shell being getting thinner, while the compression occurs 
when the bubble radius is decreasing, the shell being 

getting thicker, the conditions of rarefaction and 
compression can be related directly to the shell thickness. 
This approach can be described by the following equation 
for the rate of the stress deviator in the terms of respective 
quantities for the Maxwell and Voigt models:  

 (1 ) 0 1V MS S Sα α α= + − ≤ ≤& & &  (15) 

where SV is the stress deviator of the Voigt model and SM is 
the stress deviator of the Maxwell model. The parameter α 
can be related to the shell thickness as follows. Let us 
divide the entire range of the shell thickness into 5 regions. 
In the first region, at 0 < h < h1, the shell behaves as a 
perfect gas, while at h1 < h < h2, it behaves as a Maxwell 
fluid. If the shell thickness lies in the range h2 < h < h3, 
then a smooth transition from the calculation by the 
Maxwell fluid model, Eq.(12), to that by the Voigt solid 
model, Eq.(13), is performed, and then backwards using 
Eq.(15) with α given by  

 ( ) ( )2 3 2 2 3/ ,h h h h h h hα = − − ≤ ≤  (16) 

In the range h3 < h < h4, the shell behaves as a Voigt solid, 
while at h ¥ h4, the shell breaks down with nulling of the 
stresses which existed before.  
Shell thicknesses obtained in the course of the simulation of 
the oscillation dynamics and the translational motion of the 
contrast agent are depicted in Fig.4. The simulation was 
carried out by the model M2S

T. The initial shell thickness is 
equal to 2 nm, the shell density is 1100 kg/m3, the pulse 
duration is 2 cycles, and the frequency is 4 MHz, the 
acoustic pressure amplitude is 200 kPa. The shell relaxation 
time λS1 is 10-8·s for Eq.(12) and the shell retardation time 
λSV is 10-11·s for Eq.(13), the shell viscosity ηS is 1.0 Pa·s. 
The ranges boundaries of shell thickness for Eq.(16) are 
equal 0.2, 1.4, 1.8, 3 nm. Note that in the calculation made 
by our model (solid line), the change in the shell thickness 
for the time period considered is minimal and virtually 
coincides with the change in the shell thickness obtained by 
the Voigt model (dashed line). At the same time, the 
difference between the maximum and minimum radii of the 
contrast agent for our model is maximal. This occurs 
because the main contribution to this difference comes from 
the maximum attainable size of the contrast agent. While 
this contribution to the change of the shell thickness, as 
compared to the other models, is not so great.  

 
Fig.4 Simulated shell thickness as a function of time. 

Figure 5 shows translational displacement of contrast 
agents as a function of time for different shell models. As is 

Acoustics 08 Paris

3375



 

the case with thick shells, the largest displacement is 
reached for the Maxwell fluid model (dotted line), while the 
smallest one is observed for the Voigt model (dashed line). 
Our model proposed here has an intermediate value in this 
case. 

 
Fig.5 Simulated translational displacement as a function of 

time for two cycles of an ultrasound signal. 

5 Conclusion 

The developed model is a logical extension and 
improvement of the model proposed in [15]. The present 
model makes it possible to consider a wide circle of 
problems on the dynamics of free and contrast agent 
bubbles in both weak and strong ultrasound fields. It 
involves the calculation of translational displacement of 
contrast agents and the determination of their resonance 
frequencies. It makes possible both widening the circle of 
numerical simulations on oscillations of free gas bubbles in 
liquids in response to an imposed strong ultrasound field 
and solving similar problems for encapsulated bubbles with 
different rheological models for the encapsulating shell. 
The model also allows one to apply different rheological 
laws to the surrounding liquid, which makes possible the 
simulation of more complicated media than Newtonian 
fluids, such as blood. In the hydrodynamic approximation, a 
bubble with a multilayer coating can be investigated. The 
implementation of the described model is a handy and 
flexible tool for simulating various aspects of the 
oscillatory dynamics of free and contrast agent bubbles. 

Acknowledgments 

This work was supported by the US member of the 
International Science and Technology Center (ISTC) under 
Contract B-1213. 

References 

[1] S. L. Mulvagh, A.N. DeMario, S.B. Feinstein et al., 
“Contrast echocardiography: current and future 
applications”, J. Am. Soc. Echocardiography, 13(4), 
331-342 (2000) 

[2] A. A. Doinikov, (ed). Bubble and Particle Dynamics in 
Acoustic Fields: Modern Trends and Applications, 
Research Signpost: Kerala, India (2005) 

[3] J. Chomas, P. Dayton, D. May, K. Ferrara, 
“Nondestractive subharmonic imaging”, IEEE Trans. 
Ultrason, Ferroelect., Freg. Contr., 49(7), 883-891 
(2002) 

[4] M. Borden, G. Pu, G. Runner, M. Longo, “Surface 
phase behavior and microstructure of lipid/PEG-
emulsifier monolayer-coated microbubbles”, Colloids 
and Surfaces B, 35, 209–223 (2004) 

[5] P. Marmottant, S. van der Meer, M. Emmer, M. 
Versluis, N. de Jong, S. Hilgenfeldt, D. Lohse, “A 
model for large amplitude oscillations of coated 
bubbles accounting for buckling and rupture”, J. 
Acous. Soc. Am., 118(6), 3499–3505 (2005) 

[6] D. B. Khismatullin, A. Nadim, “Radial oscillations of 
encapsulated microbubbles in viscoelastic liquids. 
Physics of Fluids”, 14(10), 3534–3557 (2002) 

[7] A .A. Doinikov, P. A. Dayton, “Nonlinear dynamics of 
lipid-shelled ultrasound microbubble contrast agents”, 
Computational methods in multiphase flow IV, WIT 
Press Southampton, Boston, 261-270 (2007) 

[8] Y. B. Zeldovitch, Yu. Raiser, Physics of Shock Waves 
and High-Temperature Hydrodynamic Phenomena, 
Academic: New York (1967) 

[9] C. L. Mader, Appendix A and B, Numerical modeling 
of detonations, University of California Press (1985) 

[10] R. B. Bird, R. C.Armstrong, O. Hassager, Dynamics of 
polymeric liquids, Wiley: New York (1987) 

[11] E. S. Oran, J. P. Boris, Numerical simulation of 
reactive flow, ELSEVIER, New York – Amsterdam – 
London (1987) 

[12] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary 
differential equations nonstiff problems, Springer-
Verlag: Berlin and New York (1987) 

[13] A. A. Samarsky, J .P. Popov, Difference methods for 
solving gas dynamic equations, Nauka: Moscow (1980) 

[14] A. B. Rubin, Biophysics, book 2, Biophysics of cell 
processes, Moscow (1987) 

[15] A. V. Teterev, N. I. Misychenko, L. V.Rudak, A. A. 
Doinikov, “Simulation of radial oscillations of a free 
and a contrast agent bubble in an ultrasound field,” 
Computational methods in multiphase flow IV, WIT 
Press Southampton, Boston, 239-248 (2007) 

Acoustics 08 Paris

3376


