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Sound propagation in rigid porous media has been widely studied by using semi-phenomenological models. 
These models make use of a set of averaged macroscopical parameters to represent the microscopic details of the 
porous media geometry and, in a certain way, their influence on the acoustical properties is not directly 
identified. In this paper, homogenization theory and finite element method are used for solving the full 
microscopic dynamic flow and heat transfer problems for a porous medium modelled as an idealized periodic 
array of cylinders. Different cross-section shapes of the cylinders (circular, ellipsoidal and square) and a wide 
range of porosity values are considered. The full simulations are compared with standard semi-
phenomenological models of sound propagation in porous media. The influence of the micro-geometry on the 
acoustical quantities such as speed of sound, attenuation coefficient and absorption coefficient is analysed and 
proved to be significant especially at low porosities. 

1 Introduction 

Acoustics of porous media is a vastly studied subject which 
requires the knowledge of different branches of physics. 
The main areas involved in the acoustic characterization of 
a porous material are fluid dynamics and heat transfer 
theory. Different approaches to characterizing porous 
materials have been suggested during the past decades 
which mainly fall into three major categories, i.e. empirical 
models, semi-phenomenological models and direct 
simulations based on a microstructural approach. Empirical 
models, as the name suggests, are based on fitting 
experimental data and proposing empirical laws [1]. The 
main drawback of this approach is given by the non-general 
nature of the proposed fitted functions and the range of 
applicability limited to the physical characteristics of the 
materials measured. Semi-phenomenological models are 
based on proposing scaling functions, which depend on 
macroscopical independently measurable parameters to 
describe viscous and thermal behaviour of the medium. 
Within this category, one of the most important 
contributions has been made by Johnson et al. [2], who 
introduced the concept of dynamic tortuosity to describe 
frequency-dependent viscous interactions between the pore 
fluid and the frame. It depends on dc viscous permeability, 
porosity, tortuosity and viscous characteristic length, all of 
which can be independently measured. The complete 
acoustic characterization however should also consider the 
thermal behaviour of the porous medium. The work by 
Champoux and Allard [3] further complemented by Lafarge 
et al. [4] serves this purpose. They introduced another 
scaling function, complex compressibility, which depends 
on dc thermal permeability, porosity and thermal 
characteristic length. The combined Jonhson-Champoux-
Allard-Lafarge model (called JCAL henceforth) is now 
widely accepted. However, it is not sufficiently accurate in 
the frequency range where both viscous and inertial 
interactions are important [5,6], especially when dealing 
with more extreme geometries like very pronounced 
variable-width channels [5]. The behaviour of JCAL model 
was corrected by Pride et al. [5] by introducing two 
additional parameters, the so-called low-frequency viscous 
and thermal tortuosities, thus ending up with a total of eight 
parameters needed to fully describe the acoustic properties 
of a rigid porous material. This model will be referred to as 
Pride-Johnson-Champoux-Allard-Lafarge (PJCAL) model 
in this work from now on. The main drawback of this 
approach is the difficulty in measuring all the parameters 
involved in the modelling.  

The approach to be used in this work corresponds to the 
direct numerical simulation based on homogenization 
theory [7,8]. This theory provides a rigorous method of 
deducing empirical laws, such as for example the dynamic 
Darcy’s law [8]. Homogenization theory gives the 
governing equations at different levels. The main 
hypothesis behind this theory is the separation of scales, 
which in the context of porous media acoustics, is usually 
valid when sound wavelength exceeds the characteristic 
size of the medium. The equations at the respective level 
are solved in a representative elementary volume (REV) of 
the porous medium geometry by using an appropriate 
analytical or numerical method. The main drawback of this 
approach is the computational time and the use of relatively 
simplistic inner structure to represent the porous medium. 
Nevertheless, with the advent of powerful desktop 
machines this problem seems to be less relevant nowadays.  
In this paper a numerical study of the influence of the 
micro-geometry on dynamic tortuosity, dynamic bulk 
modulus and acoustical quantities such as sound 
propagation, attenuation coefficient and absorption 
coefficient is presented. The geometries under 
consideration, i.e. periodic arrays of cylinders with different 
cross-section shapes, provide an idealized representation of 
a fibrous material. The finite element method is used for the 
solution of the full microscopic dynamic flow and heat 
transfer problems as well as for calculation of the semi-
phenomenological (JCAL and PJCAL) models parameters. 
The paper is organized as follows. In section 2 the relevant 
expressions for the acoustical quantities and the governing 
equations to be solved are introduced. Results and 
discussions are presented in section 3. Conclusions 
correspond to the last section of this work. 

2 Theory and Methods 

It is assumed that the medium under study is homogenous, 
isotropic and having a rigid porous. The porous solid with 
porosity φ  is saturated by a Newtonian fluid of density 0ρ  
and viscosityη . The wavelength of sound λ  is assumed to 
be much larger than any characteristic pore or inclusion 
size. The linear response of a medium to an oscillatory, 
with angular frequencyω , macroscopic gradient of 
pressure, j t

ep e ω∇ , is related to the spatial average 
(

f
dΩ⋅ = ⋅ Ω Ω∫ ) of the fluid velocity ( )u ω  over the fluid 

phase fΩ in a REV (Ω ) by mean of the dynamic extension 
of the Darcy’s law [2,8]. 

 ( ) ( ) eu K pω ω η= − ∇ . (1) 
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The viscous interactions between the frame and the fluid 
are determined through the complex frequency-dependent 
dynamic density function ( )ρ ω , which is related to 
dynamic permeability ( )K ω  and dynamic tortuosity ( )α ω  
as follows : 

 0( ) ( ) ( )j Kρ ω α ω ρ ηφ ω ω= = . (2) 

Fluid velocity is calculated from the solution of an 
oscillatory forced Stokes flow problem. At the microscopic 
level, as the homogenization theory states, this is described 
by the following governing equations [8]: 

 
2

0 0  in ,

0  in                 0   on .
e f

f

u p p ju

u u

η ωρ∇ −∇ −∇ − = Ω

∇ ⋅ = Ω = Γ
 (3) 

No slip condition on the boundary Γ of the porous solid is 
applied as well as periodicity conditions on the elemental 
cell boundary. The latter implies zero total boundary force 
per unit of area and periodic constrictions upon velocity 
components and pressure. An arbitrary pressure was 
prescribed at one of the vertices of the cell in order to 
specify the pressure and to keep the boundary conditions 
unchanged [9]. 
The oscillatory heat transfer between the frame (cylinders 
in this case) and the fluid is described by the dynamic bulk 
modulus ( )aK ω , which is calculated from an analogous 
dynamic thermal Darcy’s law [4]: 

 ( ) '( )T j Kω ω ω κ= , (4) 

 0 0

0

( )
( 1) '( )( )a

p

P PK
C KC

j

γ γ
ω

γ ωω
γ ωρ

κφ

= =
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

, (5) 

where κ  is thermal conductivity of the fluid, pC  is the 
specific heat at constant pressure, γ  is the adiabatic 
constant and 0P  is atmospheric pressure.  

Dynamic bulk modulus varies from its isothermal value 0P  
at low frequencies to the adiabatic value 0Pγ  at high 
frequencies. As can be seen from the above, this function is 
related to the dynamic thermal permeability '( )K ω  and 
dynamic compressibility ( )C ω .  

The spatially averaged temperature difference between the 
fluid and the frame ( )T ω is calculated from the solution 
of the following problem:  

 
2

0 0 0  in ,

0  on .
p fT j C T j p

T

κ ωρ ω∇ − + = Ω

= Γ
 (6) 

Thermal insulation condition and periodic boundary 
conditions for the temperature are set on the boundaries of 
the cell. 
The acoustical behaviour of a porous material is completely 
determined by the wave number ( )q ω  and the 
characteristic impedance ( )cZ ω , [4], which are related to 
the dynamic density and dynamic modulus as follows: 

 1( ) ( ) ( )aq Kω ω ρ ω ω−= , (7) 

 ( ) (1 / ) ( ) ( )c aZ Kω φ ρ ω ω= . (8) 

If one considers a rigidly terminated layer of porous 
material, with thickness d, the surface impedance can be 
calculated as:  

 ( ) coth( )w cZ Z jqdω = . (9) 

For this configuration, the reflection coefficient and 
absorption coefficient are calculated as follows: 

 0 0( ) ( ) / ( )w wR Z Z Z Zω = − + , (10) 

 21s Rα = − , (11) 

here 0 0 0Z cρ= is the characteristic impedance of air, and 

0c is sound speed.  

Finally, the speed of sound, ( )c ω , in the porous medium 
and attenuation coefficient, ( )ta ω  are given by:  

 { }( ) / Re ( )c qω ω ω= , (12) 

 { }( ) Im ( )ta qω ω= − . (13) 

The semi-phenomenological models to be compared with 
the direct numerical simulations are JCAL [2,3,4] and 
PJCAL [5]. In these models, the dynamic density and 
dynamic bulk modulus are defined as follows: 

 ( ) ( )( )( ) ( )
0, ,( ) 1 ( ) /v v

cJ P J Pj Fρ ω ρ α ω ω ω∞= − , (14) 

 

1( ) ( )
( , )

( , ) 0( ) ( 1) 1 ,
t t

c J P
a J P

j F
K P

ω
ω γ γ γ

ω

−
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − − −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
(15) 

with the scaling functions given by: 

 ( , ) ( , ) ( , )1 / 2v t v t v t
J cF jM ω ω= + , (16) 

( , ) ( , ) ( , ) 2
( , ) ( , ) ( , )1 1 /v t v t v t

P v t v t c v tF p p jM pω ω= − + + . (17) 

Here subscripts J and P  refer to JCAL and PJCAL 
respectively. The symbols v  and t denote viscous- and 
thermal-related quantities. Dc viscous permeability 0k is 
calculated from the solution of equations (3) by setting 
frequency equal to zero and then by using Eq.(1).  
Tortuosity α∞  and viscous characteristic length Λ  are 
defined as follows [2]: 

 2

f
f E dα∞ Ω

= Ω Ω∫ , (18) 

 2 22
f

E d E d
Ω Γ

Λ = Ω Γ∫ ∫ , (19) 

where E e u∞= −∇  , e  a unitary force vector in the 
direction of the applied gradient of pressure and u∞ is the 
solution of the limiting oscillatory viscous flow problem for 
the high-frequency regime:  

 
2 0           in ,

      on ,
fu

n u e n
∞

∞

∇ = Ω

⋅∇ = ⋅ Γ
 (20) 

where n is the normal vector to Γ . As usual, the periodic 
boundary conditions are assumed on the cell boundaries [2]. 
Thermal characteristic length ′Λ  is a geometrical 
parameter defined as [3]: 
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 2
f

d d
Ω Γ

′Λ = Ω Γ∫ ∫ . (21) 

Dc thermal permeability 0k ′ is given as [4]  

 0 0k T′ = , (22) 

where 0T  is the solution of the stationary heat transfer 

problem: 2
0 0sT e∇ + = ; se is the thermal scalar equivalent 

of the unit force vector in the flow problem. Boundary 
conditions for 0T  are the same as for the oscillatory 
problem given by Eq. (6) [4].  

The viscous and the thermal shape factors ( , )v tM  are given 
by 2

08 /k α φ∞ Λ and 2
08 /k φ′ ′Λ  respectively. The viscous 

characteristic frequency, ( )
0 0/v

c kω ηφ α ρ∞= , indicates the 
transition from the viscous regime at low frequencies to the 
inertial one at high frequencies. In a similar way, the 
thermal characteristic frequency, ( )

0 0/t
c pk Cω κφ α ρ∞ ′= , 

denotes the transition from isothermal propagation to the 
adiabatic one.  
The additional parameters in the PJCAL model are 

( )
( ) 0/ 4( / 1)v
vp M α α∞= −  and ( )

( ) 0/ 4( 1)t
tp M α′= − , 

where the low-frequency tortuosity 0α  and its thermal 
equivalent 0α′  are defined as follows [5,6]: 

 
22

0 0 0/u uα = , (23) 

 22
0 0 0/T Tα′ = . (24) 

The finite element method was employed for solving all the 
equations presented in this section. For the flow problem a 
second-order lagrangian elements model the velocity 
components and linear ones model the pressure. Second-
order lagrangian elements were used for temperature in the 
thermal problem. The finite element analysis software 
Comsol Multiphysics [9] was used. It is worth noting that 
the physical parameters used in JCAL and PJCAL models 
have directly been calculated from their definitions.  

3 Results and Discussion 

Regular periodic array of circular (PACC), square (PASC) 
and ellipsoidal (PAEC) cylinders have been studied. In 
every case, the half-length of the square cell l (equal to 1 
mm in every simulation) was set as a function of the radius 
r  of the circular cylinders in PACC and porosity: 

/ (1 )l r π φ= − .The length side a of the square cylinders 

in PASC was set equal to a r π= . The ellipsoidal 
cylinders with semi-major axes 2h r=  and semi-minor 
axes equal to / 2h have been chosen to form PAEC array. 
As every configuration had the same inclusion area for a 
given porosity, the direct study of the shape influence on 
acoustical quantities has been made possible. Simulations 
were performed in the frequency range 0-5000 Hz and for 
porosity values in the range [0.6,0.99] for PACC and 
PASC, and [0.66,0.99]  for PAEC due to close packing 
constrictions. Rotation of the cylinders in PAEC (0° to 90°, 

steps of 15°) and PASC (0° to 45°, steps of 15° due to 
symmetry) has also been investigated.  
In this paper, only those results which correspond to 
porosity value of 0.8 are shown. The reader is encouraged 
to read the additional material for other porosities [10].   
Some of the configurations studied as well as 
corresponding static fluid flow fields are shown in figure 1 
for PACC, PASC rotated by 0° and 45° (PASC0 and 
PASC45; top, right to left) and PAEC rotated by 0°, 45°and 
90° (PAEC0, PAEC45 and PAEC90; bottom, right to left). 
The harmonic pressure gradient was applied in the vertical 
direction.  
Dynamic tortuosity of every configuration studied is shown 
in figure 2. There are remarkable differences among 
dynamic tortuosity functions for different geometries, with 
PAEC0 (red line) and PAEC90 (brown line) being the most 
extreme cases for both real and imaginary parts. The 
differences for both real and imaginary parts increase as the 
separation between the cylinders decreases. Physically, this 
means that viscous friction is more prominent in the narrow 
parts of the channels. 
As shown in figure 3, the dynamic bulk modulus (presented 
normalized to its isothermal value) is less sensitive to the 
shape of the cylinders even in the case of lower porosities 
[10]. Moreover, due to the scalar nature of the oscillatory 
heat transfer problem, this function shows a symmetric 
behaviour for the periodic array of ellipses with PAEC45 
being the symmetry axis. This means that the pairs 
(PAEC0, PAEC90), (PAEC15, PAEC75) and (PAEC30, 
PAEC60) have exactly the same values of dynamic bulk 
modulus. This suggests that viscous-related functions are 
more sensitive to the changes in the micro-geometry. 
Figure 4 displays the results of direct numerical simulations 
of speed of sound and attenuation coefficient compared 
with those predicted by JCAL and PJCAL models. The 
parameters of the models are presented in the additional 
material (See Table A.1 in [10]). The influence of the 
cylinder shape on the acoustical properties of the arrays can 
be quite strong in the frequency range under consideration. 
The average relative difference between PAEC0 and 
PAEC90 is 33.56% in speed of sound and 52.73% in 
attenuation coefficient. The relative error between the 
results of full numerical simulations and the model 
predictions is shown in figure 5. For speed of sound, the 
relative error is very small with maximum value of 3% for 
JCAL and 1% for PJCAL. In the case of attenuation 
coefficient, both JCAL (bottom right) and PJCAL (bottom 
right) give greater deviations from the results of the full 
numerical simulations with error in some cases exceeding 
10%. 
In general, PJCAL shows better agreement with the full 
numerical simulation results than JCAL model. 
For PAEC with porosity equal to that of close packing 
(0.66), the relative error in sound speed averaged over the 
whole frequency range can reach values of 1.1% for JCAL 
and 0.7% for PJCAL. For the attenuation coefficient, the 
averaged relative error does not show a strict pattern, 
however it tends to increase proportionally to porosity in 
the case of JCAL. The same situation occurs when using 
PJCAL, with only a slight increment in error at higher 
porosities. For JCAL, the maximum averaged error in 
attenuation coefficient is around 17% for porosities equal to 
0.7 and 0.99. For PJCAL, this maximum is around 14% 
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when porosity is equal to 0.7. The reason for this apparent 
coincidence is being investigated. 

 

 
Fig.1 Static fluid velocity, vertical component, 0.8φ = . 

Top, right to left: PACC, PASC0 and PAC45. Bottom, right 
to left: PAEC0, PAEC45 and PAEC90 

 

 
Fig.2 Dynamic tortuosity – full numerical simulation results 

for different arrays, 0.8φ = .  

 

 
Fig.3 Normalized dynamic bulk modulus - full numerical 

simulation results for different arrays, 0.8φ = . 

 
Absorption coefficient for a rigidly-backed layer of porous 
material is presented in figure 6. The thickness of the layer 
was set equal to d=10 cm. In order to make the figure 
clearer, only full numerical simulation results are shown. 
It is important to note that configurations with the same 
porosity and thickness give very different results in terms of 
both amplitude and sound absorption peaks depending on 
their micro-geometry. As it was pointed out before, PAEC0 

(red line) and PAEC90 (brown line) are the most extreme 
configurations. PAEC0 has, on average over the frequency, 
31.2% more sound absorption than PAEC90 and its 
absorption peaks are shifted to the lower frequency range 
by around 19.9% on average compared to the ones of 
PAEC90. This trend is even more pronounced at porosities 
lower than 0.8 whereas for higher porosities the increment 
of the absorption tends to be less important as well as the 
shift in the peaks. This result proves that the shape is much 
less important for higher porosities and would explain why 
empirical models, like the model proposed in [1], give 
reasonably accurate description of sound attenuation by 
high porosity absorbents. 

 

 
Fig.4 Speed of sound (left) and attenuation coefficient 
(right) – full numerical simulation results for different 
arrays (N) and predictions of semi-phenomenological 

models (J-JCAL, P-PJCAL), 0.8φ = . 

 

 
Fig.5 Relative error in speed of sound and attenuation 

coefficient between full numerical simulations and semi-
phenomenological models, 0.8φ = . 

 
The difference in sound absorption of PAEC0 compared to 
that of PAEC90 is due to the viscous losses inasmuch as 
their thermal behaviour is identical. This is also the case for 
PAEC30 and PAEC60 as well as for other symmetrical 
configurations. Both semi-phenomenological models 
considered here underestimate sound absorption coefficient. 
However, PJCAL is still more accurate than JCAL.  
In general, if the separation between the cylinders is smaller 
the viscous losses are greater, therefore sound absorption 
augments. This fact may explain the similar behaviour of 
the absorption coefficients for PAEC30 and PASC45 as the 
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minimum separation between the cylinders is almost the 
same. These results suggest that the spatial orientation of 
the cylinders may have a strong influence on acoustical 
quantities. 

 

 
Fig.6 Absorption coefficient, 0.8φ = . 

 

5 Conclusion 

The problem of the full numerical simulation of sound 
propagation in a rigid porous medium modelled as a 
periodic array of cylinders with different cross-section 
shapes has been addressed. Full numerical simulation 
results have been compared with semi-phenomenological 
model predictions such as JCAL and PJCAL.  
It was shown that there is a strong influence of the shape 
and the orientation of the cylinders on the viscous-related 
quantities. This influence is weaker for those quantities 
related to the temperature distribution around the cylinders. 
The influence is clearly more pronounced at lower 
porosities whereas at higher porosities the shape and the 
orientation of the cylinders appear to be less important. 
This fact would explain why empirical models work well 
for higher porosity materials.  
It is also concluded that speed of sound is less sensitive to 
the shape of the cylinders than attenuation coefficient and 
normal incidence absorption coefficient of a layer. 
When compared to the numerical results, the PJCAL model 
shows better performance than JCAL model. However, 
both models provide a reasonably accurate and fast way of 
predicting the acoustic properties of the studied idealised 
structures. This statement is even more appropriate if one 
considers the computational time required for the full 
numerical simulations.  
The absorption coefficient of a rigidly-backed layer of 
porous material is shown to be quite sensitive to the 
changes in cylinder shape and orientation. Amongst the 
studied arrays, PAEC0 appears to be the most efficient in 
terms of sound absorption due to its minimum separation 
between the cylinders.  This result is related to the fact that 
viscous losses are greater in the narrowest parts of flow 
channels. 
The numerical procedure described in this paper is general 
and can be easily applied to more complex geometries 
taking special care at lower porosities, where the numerical 
problem is harder to solve. 
Certainly, dynamic tortuosity is calculated from dynamic 
permeability, which is a second order tensor. In this work 

some entries of this tensor were calculated only. The 
complete characterization of the dynamic viscous 
permeability tensor requires the simulation of the parallel 
flow problem, which will be addressed in future work. 
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