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The detection of insect pests in imported goods is of considerable economic importance and the
automation of this process is becoming more viable both technologically and financially. As a result, the
Department for Environment, Food and Rural Affairs in the UK has funded a research project to develop
instrumentation facilitating real-time acoustic detection of the feeding activity of insect larvae inside
imported goods, such as timber. The instrumentation will also be capable of species-level identification.
Previous work at York has shown that detection of beetle larvae in wood is possible using low cost
piezoelectric sensors.

The project described here extends this work by investigating a number of signal analysis methods for
robust detection of biting events, including fractal dimension analysis.

1 Introduction

The ability to detect insect pests in internationally traded
goods is essential from both an environmental and eco-
nomic point of view. On average between 2002 and 2006
13.2 Million cubic metres of wood was imported and
1.63 Million exported from the United Kingdom each
year with a combined value of approximately £2.2 Bil-
lion [1]. This presents a considerable risk that unwanted
species may be transported to the UK within the wood.
The potential economic impact of an outbreak far out-
weighs the cost of monitoring. In the US, the poten-
tial impact of the introduction of the Asian Longhorned
Beetle (Anoplophora glabripennis), a species native to
Southeast Asia, was estimated at $669 billion [2].

In many cases, physical inspection of timber and trees
is not feasible and a non-invasive method of detection is
required. Acoustic detection is one such method which
has been widely used commercially and in research for
applications such as species identification [3] and be-
havioural monitoring [4].

The acoustic detection of insect larvae in timber is by
no means new and has been performed as early as 1936
[5]. As technology has advanced, automated acoustic
identification has become feasible [6].

This paper concentrates on the development of a robust
automated real-time detection system for beetle larvae
in wood.

2 Overview of system

2.1 Sensors

Piezoelectric transducers enclosed in plastic casing are
used as vibration sensors for the system. These are then
strapped around, or where possible, screwed into the
wood or tree trunk under investigation.

2.2 Detection

Audio from the sensor(s) is recorded into a buffer from
which bites are detected and passed on to the species
classifier. The detection, classification and output stages
are currently implemented in a C# application running
on an embedded x86 PC.

Figure 1: Block diagram of system

A comparison of two detection methods is presented in
this paper.

2.3 Classification

The classification process analyses each bite and at-
tempts to determine species of beetle which produced it.
Currently a combination of Time Domain Signal Cod-
ing [3] and Artificial Neural Networks is used to classify
bites by species.

2.4 Output

Primary output from the system is in the form of a
visual display giving a real-time indication of the species
detected since the system was installed. In addition to
this are optional logs and audio data of detected bites
in the event that manual identification or verification is
required.

3 Ultra Short Time Energy De-
tection

A technique known as ultra-short-time energy detection
has previously been used to detect both incidental [6]
and non-incidental [7] insect sounds. The technique is
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based on the assumption that the acoustic event which
is to be detected has a greater energy than the surround-
ing noise.

A full buffer of audio data is separated into M frames
of a fixed length:

M = N/L (1)

where N is the total number of samples and L is the
frame length in samples.

The energy for each frame, Euse(k) is then estimated
using:

Euse(k) =
L∑

i=1

[x(kL+ i)]2, k = 0, ...,M − 1 (2)

where Euse(k) is the estimated energy for frame k, L
is group size, M is the number of frames and x is the
input data.

4 Fractal Dimension Analysis

Fractal Dimension analysis is the calculation of the di-
mension of geometric shapes. Since a waveform can be
thought of as a geometric shape, this analysis can be
used to calculate a scalar value representing its complex-
ity. This form of analysis is used for many applications,
from the detection of earthquake phases [8] to the de-
tection of cardiac function [9]. It is a powerful tool for
acoustic event detection as the complexity of an acous-
tic event will differ from that of background noise.

Unlike conventional detection methods such as ampli-
tude thresholding or energy detection (described above),
fractal dimension is amplitude independent. Two wave-
forms with greatly differing amplitudes will have the
same fractal dimension as long as they are composed of
the same frequency components [10]. This is especially
useful in environments where there is a low signal to
noise ratio which would limit the usefulness of ampli-
tude or energy thresholding.

As fractal dimension is difficult to calculate directly, sev-
eral methods to estimate it have been developed.

4.1 Higuchi’s Method

For a given time sequence x(1), x(2), ..., x(N), k new
time sequences may be constructed:

xk
m =

{
x(m), x(m+ k), ..., x(m+

⌊
N −m
k

⌋
k)
}

(3)

for m = 1, 2, ..., k.

For each of these time series, the average length can be
calculated as:

Lm(k) =
∑bN−m

k c
i=1 |x(m+ ik)− x(m+ (i− 1)k| (N − 1)⌊

N−m
k

⌋
k

(4)

Lm(k) is then averaged for all m to produce an array of
means L(k).

The fractal dimension can then be estimated as the slope
of least-squares linear best fit of the curve ln(L(k)) ver-
sus ln(1/k) [11].

4.2 Katz’ Method

Katz’ method estimates the fractal dimension as:

D =
log10(n)

log10( d
L ) + log10(n)

(5)

where D is fractal dimension, L is the total length of the
curve, d is the diameter and n is the number of points
on the curve.

Sevcik identified a flaw in Katz’ method, showing that
for any waveform Katz’ equation (5) has the limit [12]:

D = lim
N→∞

[
log10(n)

log10( d
L ) + log10(n)

]
(6)

For this reason, Kat’z algorithm was not investigated
further.

4.3 Sevcik’s Method

Sevcik’s method estimates the fractal dimension using:

D = 1 +
ln(L)

ln(2 ∗ (N − 1)
(7)

where D is the estimated fractal dimension, L is the
length of the curve mapped to a unit square and N is
the number points on the curve [12].

4.4 Calculation Speed

For the purpose of detection, the accuracy of the fractal
dimension estimation is not necessarily important. This
is due to the detection system looking for a change in
fractal dimension rather than an absolute value. As it
is to be used in a real time system, computation time
was the major factor in influencing which method to use.

Table (1) shows the time taken to calculate the fractal
dimension of one minute of 16bit 44100Hz mono au-
dio in Matlab 7.6 running on a Intel Pentium 4 2.2GHz
machine with 1GB ram. The values are rounded to the
nearest 100 milliseconds and are an average over 10 runs.

These results show that Sevcik’s method offers a clear
advantage over Higuchi’s. The use of a compiled lan-
guage such as C would increase the speed of both cal-
culations but is unlikely to offer much improvement in
calculating the least-squares linear best fit, which has
the greatest impact on Higuchi’s method.
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Method Frame Size (samples) Calculation Time (s)

Higuchi

49 244.19

98 113.1

147 74.1

245 50.6

Sevcik

49 30.56

98 5.7

147 1.6

245 1.0

Table 1: Fractal Dimension Calculation Time

5 Comparison of detection meth-
ods

Given that Higuchi’s method can slower than Sevcik’s
method by a factor of 50, further investigation deals
with only the latter. From this point onwards fractal
dimension values are estimated using Sevcik’s method.

5.1 Frame Size

The frame size used has a major affect on the detection
ability of both methods. A frame size which is too small
will usually lead to detection of only a small segment of
a bite whereas a frame size which is too large can lead
to multiple bites being clustered together.

At a sampling rate of 44100Hz, a typical bite occupies
around 200 samples. However the size varies from bite
to bite as well as between different species. Additionally,
the type of wood has an impact on the bite length.

Fig. (2) shows a typical Hylotrupes bajulus bite in pine.

Ideally, the frame size should be equal to the length of
a bite and frame overlapping used to ensure the correct
start position. Alternatively, the frame size can be set
to some fraction of the average bite length if there is to
be no frame overlapping.

Smaller frame sizes can improve detection but can lead
to the detection of only parts of bites. This can be over-
come by adding a predefined number of samples to the
end of each detected bite.

The nature of the classification method means that bite
detection does not need to be perfect. Small periods of
noise at the beginning and end of a bite have a minimal
impact on classification. This is especially useful in a
real-time system as it negates the need to have overlap-
ping frames which speeds up the detection process.

Figure 2: Single Hylotrupes bajulus Bite

5.2 Detection Threshold

The energy or fractal dimension values are normalised
using Eq (8) in order to provide a measure of how much a
frame differs from its surroundings. A simple threshold
can then be applied to the output of the equation to
determine whether a particular frame is an event.

∆F =

∣∣CF − C
∣∣

σ
(8)

Where CF is the energy or fractal dimension of the frame
F, C is the mean energy or fractal dimension and σ is
the standard deviation. Clearly, the larger the CF value
a bite’s frame has, the easier it is to detect.

Additionally, horizontal thresholds can be applied to
prevent single bites being detected as several bites in
a row when using a small frame size.

6 Results

Fig. (3) and Fig. (4) show the potential ability to de-
tect a Hylotrupes bajulus bite using frame lengths of 245
samples and 98 samples respectively.

The signal to noise ratio is calculated using peak volt-
ages. The horizontal line in each graph represents the
threshold level of 3. This figure is based upon the as-
sumption that the noise will have a normal distribution
and therefore 99.7% of noise frames will fall below this
threshold.

Fractal Dimension appears to offer an advantage over
Ultra-short-time energy detection of 5dB and 2dB for
frame sizes of 245 and 98 respectively. Further investi-
gation is required to show that this advantage still holds
for other species of beetle.
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Fig. (3) shows the average CF values at different signal to noise ratios for 100 Hylotrupes bajulus bites
embedded in 30 seconds of Gaussian noise each, using a frame size of 245 samples.

Figure 3: Comparison of Fractal Dimension and Ultra-short-time energy detection. (Frame Size = 245)

Fig. (4) shows the largest average CF values for the same bites using a smaller frame size of 98 samples.

Figure 4: Comparison of Fractal Dimension and Ultra-short-time energy detection. (Frame Size = 98)
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7 Conclusion and further work

Fractal dimension is a useful tool in event detection due
to its relative insensitivity to amplitude. The results
show that fractal dimension analysis offers a clear ad-
vantage over ultra-short-time energy detection in high
noise environments. Further investigation will be car-
ried out to determine the suitability of such bites for
the purpose of species classification.

7.1 Classification using fractal dimension

Previously, species classification has been performed us-
ing a combination of time domain signal coding (TDSC)
and artificial neural networks. Research into the pos-
sibility of using fractal dimension to classify bites by
species is currently being conducted.

7.2 Sensors

Further research into the use of multiple wired and wire-
less sensors as inputs to the system will be carried out
in the future.
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