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Abstract Digital waveguide mesh method has been widely used to model musical instruments and simulate 
room acoustics. In this paper, digital waveguide mesh method was applied to calculate the acoustic vector fields 
in the Pekeris waveguide. After introducing a boundary condition treatment method for the ocean bottom in the 
digital waveguide mesh, the acoustic pressure and particle velocity fields are calculated in spatial and temporal 
dimensions. Using these calculation results, the waveforms for the received signals and distribution of acoustic 
intensity in the underwater sound channel can also be obtained. Numerical simulation shows that the digital 
waveguide mesh method can be used to simulate the low frequency two-dimensional acoustic vector fields in 
shallow water and this method can be easily applied to three-dimensional acoustic vector fields calculation.  

1 Introduction 

Recent years, the vector sensor is widely used in 
underwater acoustics research [1, 2, 3, 4]. Several methods 
have been suggested for underwater acoustic vector fields 
modeling. The university of Miami parabolic equation code 
(UMPE) was modified in order to efficiently calculate 
acoustic particle velocity [5]. The acoustic power flow in 
ideal waveguide was also analyzed according to normal 
mode theory [6]. The digital waveguide (DWG) mesh is a 
method for simulating wave propagation in multiple 
dimensions. The digital waveguide (DWG) mesh was first 
introduced for acoustical instrument modeling inherently 
includes the diffraction and interference effects into the 
model [7, 8, 9, 10]. It is a promising method especially for 
modeling small rooms and low frequencies, where the 
geometrical methods typically fail. In this paper, this 
method was applied to modelling the acoustic vector fields 
in the Pekeris waveguide. A boundary condition treatment 
method is introduced for modelling changes in wave 
propagation media such as the ocean bottom. Using digital 
waveguide mesh method, the acoustic pressure and particle 
velocity fields are calculated in spatial and temporal 
dimensions and the waveforms of received signals and 
distribution of acoustic intensity in the underwater sound 
channel are also obtained. The predictions of the digital 
waveguide (DWG) mesh method are compared with the 
results calculated with normal mode theory. Numerical 
simulation shows that the digital waveguide mesh method 
can be used to simulate the low frequency two-dimensional 
acoustic vector fields in shallow water and this method is 
easily applied to the calculation of three-dimensional 
acoustic fields. 
Section 2 provides the basic theory of underwater sound 
propagation and normal mode method. In section 3, the 
acoustic vector fields calculation with digital waveguide 
mesh method is discussed. Numerical examples are given in 
section4, in order to illustrate the accuracy and capability of 
this approach.  

2 Basic theory of wave propagation 

In classic acoustic theory, the propagation of sound in the 
ocean is described by the Euler equation, continuity 
equation and the state equation obtained by the linearization 
of the hydrodynamic equations of the ideal liquid [11]. The 
Euler equation is  
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The continuity equation is  
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Where vv  is the particle velocity, p is the sound pressure, 

0ρ is the density of the medium, and t  is time. The state 
equation is  
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According to these equations, the wave equation for sound 
propagation in a homogeneous medium can be derived as  
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For the harmonic sound propagation problem, the wave 
equation reduces to the Helmholtz equation 

 022 =+∇ pkp                             (5) 

where ck ω=  is the wavenumber. In the layered 
medium, the sound pressure can be evaluated by contour 
integration [12]  
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where nZ is the mode function and nξ is the eigenvalue. 
The contour integral represents the trapped modes that 
propagate through the water column. The branch-cut 
integral is associated with the continuous mode spectrum 
and describes the near-field conditions. In the normal mode 
theory, the branch-cut integral is neglected, and the sound 
pressure can be obtained: 
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where ),( ρrg is a general function of range and water 

density nδ is the attenuation coefficient. 
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It should be noticed that the Euler equation has indicated 
the relation between the sound pressure p and particle 
velocity vv . It can be rewritten as  

∫∇−= pdtv
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According to Eq.(8), the particle velocity fields vv can be 
obtained if the sound pressure fields have been calculated.  

3 Theory of digital waveguide mesh 

Digital waveguide and wave equations 
In cylindrical coordinates ( zr ,,θ ), according to the digital 
waveguide theory, the set of partial differential equations 
describing a lossless, source-free parallel-plate transmission 
line in (2+1) dimension is the following equations [13]:  
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where i  and u  are the current in and voltage across the 
lines,  l  and c  are the inductance and capacitance per unit 
length, and rllr = , λθ rll = , rccu = , rΔΔ= θλ . 

If we assume that l  and c  are constant, then the set of 
equations can be reduced to a single second-order equation 
in the voltage alone.  
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where lc1=γ . For a two dimensional sound problem, 
the centered difference scheme can be applied to Eq.(9) 
with the interleaved grid as shown in Fig.1 [13]. Then the 
ccurrent i  and voltage u  can be calculated in spatial and 
temporal dimensions. 
Comparing Eq.(9) with the equations in section 2, it can be 
found that the current i  is equivalent to particle velocity 
and the voltage u  is equivalent to sound pressure. So 
digital waveguide mesh method can be used to simulate the 
acoustic vector field for underwater sound propagation.  
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Fig.1 Interleaved computational grid for the (2+1)D 

3.1 Boundary conditions 

When the digital waveguide mesh method is applied to 
model underwater acoustic vector fields, the boundary 
conditions are needed for modeling changes in wave 
propagation media at ocean bottom. Several boundary 
condition treatment methods have been implemented in 
digital waveguide mesh. For underwater sound propagation, 
one can get the following relationships from boundary 
conditions at a horizontal interface as: 

)2()1( pp =                                   (11-1) 
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zz vv =                                  (11-2) 

where )1(p and )1(v  represent the sound pressure and 

particle velocity in the water column, )2(p and )2(v  
represent the sound pressure and particle velocity in the 
ocean bottom. From Eq.(11), the relation between the 
current i  and voltage u  in the digital waveguide mesh can 
derived as  

)2()1( uu =                                (12-1) 
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Then the acoustic vector fields in water column and ocean 
bottom can be calculated using Eq.(9) separately with the 
interleaved grid for the ocean bottom boundary as shown in 
Fig.2. 

D

 
Fig.2 Interleaved computational grid on ocean bottom  
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where )(
,
D
jiU  represent the sound pressure on the ocean 

bottom boundary, and 
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where k  stands for either of 1 or 2, represent the parameter 
in the water column or in the ocean bottom. 

4 Numerical examples 

In this section, we present solutions that demonstrate the 
accuracy and capability of the digital waveguide mesh 
method for acoustic vector field modeling. We compare the 
solution with the results obtained using normal mode 
method or fast-field processing method (FFP).  
As shown Fig.3, example A involves a 100Hz source at 

4=z m in 50m depth water column with an absolutely 
rigid bottom. The sound speed of the water column is 
1500m/s.  

31000kg/m
1500m/sc

ρ =
=

 
mH 50=

mz 40 =

 
Fig.3 Environment parameters for example A 

The calculated temporal waveform of the for the sound 
pressure and particle velocity signal received at range 1000, 
on the depth 10m is shown in Fig.4. The transmission loss 
of the sound pressure, horizontal particle velocity and 
vertical particle velocity calculated using digital waveguide 
mesh method with grid spacing mzr 0.1=Δ=Δ are 
compared with the results obtained using normal mode 
method in Fig.5, Fig.6 and Fig.7 separately. The results 
with grid spacing mzr 5.0=Δ=Δ  are also shown in 
Fig.8, Fig.9 and Fig.20. It can be seen that the results are 
agree very well if  the grid spacing is small enough in 
digital waveguide mesh. 
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Fig.4 Calculated temporal waveform of the 

 signal for sound pressure and particle velocity  
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Fig.5 Transmission loss for sound pressure  
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Fig.6 Transmission loss for horizontal particle velocity 
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Fig.7 Transmission loss for vertical particle velocity 
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Fig.8 Transmission loss for sound pressure  

0 100 200 300 400 500 600 700 800 900 1000

140

150

160

170

180

190

200

210

range(m)

Tr
an

sm
is

si
on

 L
os

s(
dB

)

Horizontal Velocity: f=100Hz,Depth=50m,Zs=4m,Zr=10m,Delta=0.5m

KRAKEN
DWN

 
Fig.9 Transmission loss for horizontal particle velocity 
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Fig.10 Transmission loss for vertical particle velocity 

Example B involves a 50Hz source at 25=z m. The depth 
of the water column is 100m and the thickness of the 
sediment layer is also 100m. The lower boundary of the 
sediment is selected as an absolutely soft boundary 
condition. The environment parameters are shown in Fig.11. 
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Fig.11 Environment parameters for example B 

The transmission loss for the acoustic vector fields at depth 
30m are calculated with program KRAKEN, FFP and 

DWG method [14]. The results of KRAKEN and DGW 
method are shown in Fig.12, Fig.13 and Fig.14. The 
comparison between the results of DWG method and FFP 
method are given in Fig.15, Fig.16 and Fig.17.  
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Fig.12 Transmission loss for sound pressure  
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Fig.13 Transmission loss for horizontal particle velocity 
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Fig.14 Transmission loss for vertical particle velocity 
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Fig.15 Transmission loss for sound pressure  
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Fig.16 Transmission loss for horizontal particle velocity 
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Fig.17 Transmission loss for vertical particle velocity 

From these figures, it can be found that the error of 
transmission loss for vertical particle velocity is greater 
than the errors for sound pressure and horizontal particle 
velocity. It is shown that the results obtained with DWG 
method and FFP method are agreed very well and the 
difference between the DWG method and normal mode 
results is greater. As the Fast-field model has considered 
the contribution of branch-cut integral, the results of FFP 
method is more accurate than the results obtained with 
KRAKEN method in the near field. So it can be deduced 
that the DWG method is accurate in the near field acoustic 
vector field modeling. 

5 Conclusion 

In this paper, the digital waveguide mesh method is used to 
model the acoustic vector fields for underwater sound 
propagation. A boundary structure is introduced for 
modeling the ocean bottom conditions for the digital 
waveguide mesh calculation. Compared with the results of 
normal mode method and fast-field model, it is shown that 
the digital waveguide mesh method gives remarkably 
accurate results for near-field acoustic vector fields 
modeling in spatial and temporal dimensions. Using the 
calculated sound pressure and particle velocity results, the 
waveforms for the received signals and distribution of 
acoustic intensity in the underwater sound channel can also 
be obtained. Numerical simulation shows that the digital 
waveguide mesh method can be used to simulate the low 
frequency two-dimensional acoustic vector fields in 
shallow water and this method can be easily extended to 
three-dimensional acoustic vector fields calculation. 
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