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Regularization plays an important role in Near-field Acoustical Holography (NAH), and choosing the
right amount of regularization is crucial in order to get a meaningful solution. Automated methods such
as the L-curve Criterion (L-C) or Generalized Cross Validation (GCV) are often used in NAH to choose
a regularization parameter. These parameter choice methods (PCMs) are attractive, since they require
no a priori knowledge about the noise – however, there seems to be no clear understanding of when
one PCM is better than the others. This paper presents a comparison of three PCMs: GCV, L-C, and
Normalized Cumulative Periodogram (NCP). The latter method is new within NAH, and it is based on
the statistical properties of the residual vector. The methods are used in connection with three NAH
methods: Statistically Optimized Near-field Acoustical Holography (SONAH), the Inverse Boundary
Element Method (IBEM), and the Equivalent Source Method (ESM). All combinations of PCMs and
NAH methods are investigated using simulations with different types of noise, and comparisons are also
carried out for a practical experiment. The aim of this work is to create a better understanding of which
mechanisms affect the performance of the different PCMs.

1 Introduction

Several methods have been developed in the area of
Near-field Acoustical Holography (NAH), such as Sta-
tistically Optimized Near-field Acoustical Holography
(SONAH) [8, 3, 2], the Equivalent Source Method (ESM)
[6], and the Inverse Boundary Element Method (IBEM)
[1, 7]. In the presence of noise, all these methods require
regularization in order to get a meaningful estimation of
the acoustic quantities (sound pressure, particle veloc-
ity, and/or intensity) on the source surface of interest.

The optimal amount of regularization is unknown
in practice, and automated procedures such as Gener-
alized Cross Validation (GCV) or the L-curve criterion
(L-C) are often used to select the regularization param-
eter [4]. The performance of a parameter choice method
(PCM) depends on both data and the associated NAH
approach. In [9] different PCMs are compared using
conventional Fourier based NAH, in [7] the comparisons
are based on an indirect IBEM formulation, and in [2]
SONAH is investigated with respect to the PCMs.

In this paper, GCV, L-C, and a recently developed
method, based on the Normalized Cumulative Perio-
dogram (NCP) [5], are used with SONAH, ESM, and
IBEM. The aim is to see how the performance of the
PCMs change with the data across the investigated NAH
methods, and to get a clearer picture of when to use
which PCM. The results are based on Tikhonov regu-
larization only.

2 Brief Outline of Theory

2.1 The Reconstruction Methods

Throughout, r denotes a general position vector, and ri

is the position of the ith measurement. The pressure at r
is denoted by p(r), and the vector p holds the measured
data in a set of measurement points. Given p(r), the
particle velocity in the direction χ is given by

vχ(r) =
−1

jωρ0

∂p(r)
∂χ

, (1)

where ω is the angular frequency, ρ0 is the density of
the medium, and the implicit time variation is ejωt.

SONAH. In a homogenous and source-free medium,
any sound field on one side of an infinite plane can
be uniquely expanded into plane and evanescent waves.

Hence we can write the pressure as the inner product of
two infinite vectors:

p(r) = aT α(r). (2)

Here, αj(r) is the value of the jth wave component in
the plane wave expansion at r, and aj is the complex
amplitude of that component. The sound pressure at a
set of measurement points is then given by

p = Aa, (3)

in which the ith row in A equals α(ri)T .
The coefficients can, e.g., be estimated by solving

Eq. (3) in a Tikhonov regularized least squares sense,

aλ = (AHA + λ2 I)−1AHp, (4)

where I is the identity matrix, H denotes Hermitian
transpose, and λ is the regularization parameter. The
regularized pressure is then pλ(r) = aλ

T α(r). There are
infinitely many columns in A and elements in α(r), and
following [3] it is more convent to use the expression

pλ(r) = pT (AAH + λ2 I)−1Aα(r). (5)

The sums in each element of AAH and Aα(r) represent
integrals that are computed using numerical integration.
To obtain the pressure and velocity on the source sur-
face, the position r is set accordingly in Eqs. (5) and (1).

ESM. The basic idea in ESM is to represent the ra-
diation from the real sound source as a set of equivalent
sources. In this paper, we use monopoles distributed
near the physical source surface. Assuming that this
model represents the radiated field, the pressure at the
microphone positions can be expressed as in Eq. (2),
but now element αj(r) contains the free space Green’s
function from the position of the jth equivalent source
to the point r. As in SONAH, the coefficients (or source
strengths) can be found by matching the field model to
the measured data, and the solution is similar to that
in Eq. (4), with a different coefficient matrix, of course.

In SONAH the wave expansion is continuous yielding
matrices/vectors with infinite dimensions, but in ESM
we have a finite number of equivalent sources, and the
coefficient vector can therefore be computed explicitly.
After the calculation of the coefficients via Eq. (4), the
pressure and velocity are found using Eqs. (2) and (1).

IBEM. The direct BEM formulation is based on
the Helmholtz integral equation. The boundary is dis-
cretized into an element mesh, and the pressure at a set
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of field points can then be expressed as

p = Amps + Bmvs, (6)

where ps and vs contain the pressure and velocity at
the nodes, respectively. Equation (6) can also be used
to express the pressure in all the nodes:

ps = Asps + Bsvs, (7)

Inserting Eq. (7) in Eq. (6) yields

p = Hvs, H = Am(I−As)−1Bs + Bm. (8)

Equation (8) relates the velocity on the boundary of the
sound source to the sound pressure at an arbitrary field
point exterior to the source. For the inverse problem,
the pressure p is known, and vs is the unknown velocity
which can estimated using Tikhonov regularization as

vs,λ = (HHH + λ2I)−1HHp. (9)

Note that in IBEM the transfer matrix directly re-
lates the field pressure to the surface velocity via Eq. (8),
whereas in SONAH and ESM the transfer matrix relates
the field pressure to wave coefficients via Eq. (3). This
means that in IBEM, the PCM operates with a solution
vector which is the physical quantity of interest (the
particle velocity). In SONAH and ESM, however, after
finding a regularization parameter the solution vector is
multiplied by a matrix, cf. Eq. (2). This additional ma-
trix multiplication in SONAH and ESM can be expected
to have an additional smoothing effect on the solution.

2.2 The Parameter Choice Methods

Here we briefly summarize the three PCMs used in this
work; we refer to [4] and [5] for details and further ref-
erences. For all three NAH methods we use a common
notation where p denotes the measured data, K is the
coefficient/system matrix, and xλ is the regularized so-
lution (either the coefficient vector aλ in SONAH and
ESM, or the velocity vector vs,λ in IBEM).

GCV is a statistically based method that seeks to
minimize the prediction error ‖pt−Kxλ‖2 between the
exact sound pressure pt and the predicted sound pres-
sure. This is achieved by minimizing the GCV function:

‖p−Kxλ‖2 / trace(I−K (KHK + λ2 I)−1KH).

The trace-term can easily be computed from the eigen-
value decomposition of the matrix AAH in SONAH, or
an SVD of A in ESM and H in IBEM.

L-C is a heuristic method based on the L-curve, i.e.,
a log-log plot of the solution norm ‖xλ‖2 versus the
residual norm ‖p −Kxλ‖2. If this curve has the form
of an “L” then the regularization parameter that corre-
sponds to the corner of the “L” is often a good choice
that balances the regularization and perturbation errors
in the solution.

NCP is a new statistically based method that seeks
to choose λ such that precisely all information is ex-
tracted from the data, and only noise is left in the resid-
ual. This is done via the normalized cumulative peri-
odogram which is used to choose the λ for which the
residual vector – in a statistical setting – can be consid-
ered “closest” to being white noise.

3 Simulation Results

In our simulations the measurement points are distributed
in a regular grid of 8 × 8 points separated by 3 cm,
with its center at (x, y, z) = (0, 0, 0) m. The recon-
struction points are at z = −0.03 m with the same x, y-
coordinates as the measurement points. Two monopoles
are placed at rs1 = (−0.05, 0.05,−0.06) m and rs2 =
(0.08, 0,−0.06) m, respectively, to simulate a sound field.

Only the particle velocity in the z-direction is con-
sidered when calculating the reconstruction errors. As
an error measure we use

‖vs − vs,λ‖2
‖vs‖2

× 100 %, (10)

where the vectors vs and vs,λ represent the true and
estimated particle velocities, respectively.

To simulate measurement noise, phase mismatch be-
tween the microphones is introduced as pi = pt

i exp(jφi),
where pt

i is the true sound pressure at the ith measure-
ment position, and φi is the associated phase error taken
from a uniform distribution with standard deviation 1◦.

In SONAH one must set a virtual source plane, at
which the evanescent components in the wave expansion
has the same amplitude as the plane waves [3], and here
this plane is located at z = −0.075 m. The equivalent
sources in ESM are positioned at z = −0.09 m in 12×12
grid points centered around (x, y) = (0, 0) m and with
3 cm separation. The boundary mesh in IBEM consists
of 0.015× 0.015 m quadratic elements that constitute a
rectangular box of dimensions 0.33× 0.33× 0.12 m sur-
rounding the monopoles. The top side of this box coin-
cides with the reconstruction surface, and it has nodes
at the reconstruction points.
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Figure 1: Reconstruction errors for 50 ensembles of
simulated microphone mismatch for each frequency.

The phase error’s standard deviation is 1◦.

The errors in the reconstructed velocities are shown
in Fig. 1 for 50 sets of noise ensembles at three different
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frequencies. Each plot shows the results using GCV, L-
C, and NCP. The curves labelled “Optimal” correspond
to the value of λ yielding the lowest smallest error for
that given noise ensemble.

For SONAH the L-C and GCV methods generally
yield lower errors than NCP, and the parameter choice
is very close to the optimal choice. For GCV, however,
there are a few outliers for f = 500 Hz. The behavior
is more or less the same for ESM, except L-C has more
outliers than GCV here.

During the simulations it was observed that for some
noise ensembles the L-curve had two corners, and for
some of these instances the “wrong” one was chosen –
this is seen as errors around 50 % at f = 1500 Hz for
ESM. For IBEM the better choice is clearly made by
NCP, while both L-C and GCV are unstable and led to
large errors. Notice that for all three methods NCP is
generally stable in its parameter choice with respect to
the ensembles, although having a higher error level.
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Figure 2: Microphone positions seen in the x, z-plane
(left) and x, y-plane (right) before and after

introducing misalignment. The blue circles are without
misalignment and the other colors indicate four groups

that are misaligned.

Next, misalignment of the microphones is simulated.
The 64 microphones are divided into four groups, and
the individual groups are displaced as shown in Fig. 2.
The sound pressure at the misaligned points is used as
measured pressure, but maintaining the original posi-
tions as the “assumed” positions in the reconstruction
model. The noise ensembles from the previous simula-
tion are reused in addition to the misaligned input data.

The reconstruction errors are shown in Fig. 3; notice
that the vertical axis is different from that in Fig. 1.
GCV is clearly significantly affected by the misalign-
ment for all three methods, while L-C and NCP gener-
ally remain stable. A random misalignment of each in-
dividual microphone would serve as additional random
phase mismatch, hence it is reasonable to believe that
such a displacement would not affect the performance
of GCV in the same way. Moving the entire array in the
measurement plane, or turning it a few degrees around
its own axis, did not introduce such large errors for GCV
(results not shown here), but only a small misalignment
of just one of the four groups in Fig. 2 was enough to
provoke its instability.

These observations indicate that if a 4 × 4 array is
used in practice to measure the pressure at the 64 posi-
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Figure 3: Reconstruction errors using the same noise
ensembles as in Fig. 1, but with additional simulated

misalignment of the microphones.

tions, there is a significant risk of getting low accuracy
if GCV is used, compared to using an 8× 8 array.

4 Experimental Results

Our experiments were carried out in an anechoic cham-
ber using a source object consisting of a 0.4×0.5×0.4 m
box of 19-mm fibreboard with one side replaced by a 3-
mm steel plate. The 0.4× 0.5 m steel plate was excited
near its center with broad-band noise using a Brüel &
Kjær exciter. A stinger was mounted on the exciter, and
a force transducer connected the stinger to the plate (us-
ing beeswax on the transducer).

The resulting normal velocity of the plate was mea-
sured in 16 × 14 points (with a 3 cm spacing between
the points) using an Ometron laser vibrometer. The
sound pressure was then measured at different positions
with an 8×8 microphone array. First, it was positioned
at the center position (symmetrically with respect to
the plate), and then at four different positions yielding
16×16 measurement points (also symmetrically with re-
spect to the plate). This was done at different standoff
distances from the plate.

As in the previous section only the velocity recon-
struction is considered, and to circumvent problems such
as drift in the setup the transfer functions (between force
transducer and laser/microphones) are used instead of
the velocity itself. The results from the laser are as-
sumed to be the “true” velocity and the error is calcu-
lated as in Eq. (10). However, since the difference in
phase response between the laser and the microphones
is unknown, only absolute values are considered when
calculating the error.

The mesh used for IBEM consists of quadrilateral
elements with 15 mm side lengths on the surface of the
steel plate and approximately 30 mm on the remaining
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sides of the box. In ESM the monopoles are distributed
at a distance equal to 1.5 times the microphone spac-
ing (45 mm) behind the plate. There is one monopole
below each reconstruction point, and there are two addi-
tional rims of monopoles extending the region of equiv-
alent sources, i.e., when reconstructing only at the 8×8
center points there are 12 × 12 monopoles, and when
reconstructing at all 16 × 14 points there are 20 × 18
monopoles. In SONAH the virtual source plane is also
placed 45 mm behind the plate.
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Figure 4: Reconstruction errors using data from 8× 8
microphone positions around the center of the steel

plate (standoff distance is 30 mm). Left: data from a
single array. Right: data from four 4× 4 sub-arrays.

Figure 4 shows the reconstruction errors versus fre-
quency. The left column shows results based on data
from a single 8× 8 microphone array at the center. The
results in the right column were obtained using four 4×4
sub-arrays from the 16×16 measurements, combined to
yield a situation similar to that in Fig. 2. In both cases,
there are 8× 8 reconstructions points on the plate.

For GCV, the error clearly increases when using the
four sub-arrays, while the error for L-C and NCP is more
or less the same (at least for SONAH and ESM). Assum-
ing that the main source of errors is the misalignment,
these results are in agreement with our simulations. In
SONAH and ESM, GCV is slightly better than L-C
when using a single array, and NCP clearly produces
larger errors. When combining the four sub-arrays, L-C
is the better choice. In IBEM the highest accuracy is
achieved with NCP for both cases and, as in the simu-
lations, L-C and GCV do not work well.

In Fig. 5 all 16 × 16 measurements from the four
arrays are used, and now the number of reconstruction
points is increased to all the 16×14 points on the plate.
For SONAH and ESM, the large misalignment errors for
GCV are not seen here. We recall that the plots repre-
sent standoff distances different from that in Fig. 4, and
part of the explanation for the better GCV results in
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Figure 5: Reconstructed errors using the 16× 16
measurements at two standoff distances.

Fig. 5 (for SONAH and ESM) could be that the array
positions were better aligned for the 15 mm and 45 mm
distances. However, when using the 16 × 16 measure-
ments for the 30 mm distance the performance of GCV
(not shown here) is better than in Fig. 4. When all
16 × 16 measurements are included, the 8 × 8 aligned
points in the array cover a larger area in space than the
4 × 4 points from before, and hence it is fair to believe
that the influence of misalignment decreases.

For SONAH and ESM the performance does not
change much when increasing the standoff distance to
45 mm. This is, of course, not a general tendency for
all sound sources. For example, a thinner steel plate
would result in more evanescent waves components, and
in such cases the standoff distance becomes more impor-
tant. In IBEM the PCMs clearly perform better for the
45 mm distance.
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Figure 6: L-curves in IBEM for two different standoff
distances at f = 800 Hz.

Figure 6 shows the L-curve in IBEM at f = 800 Hz
for the two standoff distances. At 15 mm the curve
has no L-shape, and the algorithm simply chooses the
parameter corresponding to the smallest residual norm.
As explained in Sec. 2.2 the L-curve criterion assumes
that for a noisy ill-posed problem the solution norm in-
creases dramatically when λ decreases beyond a certain
level, and the more ill conditioned the problem the faster
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the solution norm will increase. Normally, the lack of an
L-shape means that no regularization is needed. How-
ever, as seen in the error for the 15 mm standoff (Fig. 5),
some regularization is indeed required. The explanation
for the missing L-shape is that the IBEM problem is
well conditioned (from the point of perturbation anal-
ysis), which means the assumption behind the L-curve
criterion is violated. When moving the measurement
plane to 45 mm the problem becomes more ill condi-
tioned which benefits the underlying requirements. An-
other way of making the problem more ill conditioned
would be to increase the mesh density for the recon-
struction, thereby including higher spatial frequencies
in the source model. These high spatial frequencies rep-
resent strongly decaying wave components, which will
translate into a more ill-posed problem.
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Figure 7: Absolute values of the reconstructed
velocity in (m/s)/N on the steel plate, at f = 800 Hz

using IBEM.

Figure 7 shows IBEM’s predicted velocity distribu-
tions at f = 800 Hz for the 15 mm standoff. The
very small regularization parameter selected by L-C and
GCV results in a very noisy reconstruction, while NCP
gives a good reconstruction. It is clearly seen that Tik-
honov regularization has a filtering effect on the solu-
tion, which is crucial in order to get a meaningful solu-
tion – even when the L-curve seems to indicate that the
problem is well conditioned.

5 Conclusion

Three parameter-choice methods (GCV, L-curve, and
NCP) were compared for three different methods in near-
field acoustical holography: SONAH, ESM, and IBEM.
Our results show that GCV is sensitive to misalign-
ment of the array positions when several array positions
are used in one reconstruction. This effect is most se-
vere when using combinations of smaller sub-arrays, e.g.,
with four arrays 4× 4 microphones.

For SONAH and ESM the most robust method was
the L-curve, while NCP in general gave higher errors.
It was shown that an IBEM problem may be too well-
conditioned for the parameter choice methods to select
an appropriate regularization parameter. In such cases

it may be necessary to move further away from the
source or refine the density of the boundary mesh. The
best choice for IBEM was NCP, since GCV and the L-
curve generally under-regularized the solution resulting
in a noisy reconstructions.

The IBEM transfer matrix used in this paper di-
rectly relates the field pressure to the surface velocity,
whereas in SONAH and ESM the transfer matrix relates
the pressure to coefficients of elementary wave functions.
Hence, in the latter, after finding a regularization pa-
rameter the resulting coefficients are multiplied by a
matrix to get the velocity at the surface. This matrix
multiplication has an additional smoothing effect, which
may explain why GCV and the L-curve work better with
SONAH and ESM, i.e., under-regularization by GCV
and the L-curve yields good regularization after the ad-
ditional “smoothing” matrix multiplication.
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