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In the present paper it is investigated the solutions of a general acoustical equation, describing in the second 
order perturbation theory a nonlinear evolution of wide spectrum acoustical disturbances in nonequilibrium 
media with one relaxation process. Stationary structures of general equation, the conditions of their 
establishment and all their parameters are found analytically and numerically. In acoustically active media it is 
predicted the existence of the stationary solitary pulse. It is considered 1-D relaxing gas dynamics system of 
equations with simple Landau-Teller model of relaxation. The possible stationary profiles are shown in 
nonequilibrium degree- stationary wave speed bifurcation diagram. The boundaries of this diagram are obtained 
in analytical forms. The field of weak shock wave instability is shown in this bifurcation diagram. Unstable 
shock wave disintegrates into the sequence of solitary pulses described by the general acoustical equation.

1 Introduction 

For the last  years, a large number of experiments have 
been demonstrating the unusual shock wave modification 
in nonequilibrium media. Chemical active mixtures with 
irreversible reactions, vibrationally excited gases, 
nonisothermal plasmas are examples of acoustically active 
nonequilibrium media. In such media it is possible the 
existence of stationary nonlinear structures that are 
different from the step-wise shock wave structures. In 
particularly, the shock wave amplification, the shock front 
splitting and the precursor generation were observed in 
weakly ionized gases [1-7]. One of the reasons of these 
structure changes can be connected with the new 
acoustical properties of nonequilibrium media. Acoustics 
of thermodynamically nonequilibrium media differs 
significantly from the acoustics of equilibrium media [8]. 
In the nonequilibrium media, the second (bulk) viscosity 
coefficient ξ  and sound dispersion can be negative: 0<ξ  
and ∞> cc0 . Here, 0c  and ∞c  are the equilibrium (low-
frequency) and frozen (high frequency) sound velocities, 
respectively. The media possessing negative viscosity can 
be acoustically active. The acoustical increment in these 
media has simple form 
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where )/1/1(3/4 PV CC −+= χημ , χη,  are the shear 
viscosity and the thermal conductivity coefficients; Sc is 
the sound speed, 0ρ is density, pV CC , are specific heats 
at constant volume and pressure respectively. The general 
condition of acoustically instability is 0)( <+ μωξ .  

Moreover, the low-frequency coefficient of gas dynamic 
nonlinearity 2/)1( 00 +≠Ψ γ . Besides, 0Ψ  is a 
complicated function on a nonequilibrium degree. The 
frozen coefficient of gas dynamic nonlinearity has the 
usual form 

2/)1( +=Ψ ∞∞ γ  

These new acoustical properties of nonequilibrium media 
should be taken into account in studies of different 
gasdynamic phenomena. 
In the present work, we investigate the qualitative 
influence of the nonequilibrium on the shock wave 
structure in nonequilibrium vibrationally excited gas with 
the simplest exponential relaxation law: 
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Here, E  is the energy of the vibrational degrees of 
freedom of the molecules, eE  is its equilibrium value, τ  
is the vibrational relaxation time, and Q  is the energy 
source sustaining thermal nonequilibrium in the system (in 
particular, electric pumping in discharge). 
In the first part of the present paper it is investigated the 
solutions of a general acoustical equation, describing in the 
second order perturbation theory a nonlinear evolution of 
wide spectrum acoustical disturbance. Its low- and high- 
frequency limits correspond to Kuramoto-Sivashinsky 
equation and the Burgers equation with a source, 
respectively. Stationary structures of general equation, the 
conditions of their establishment and all their parameters 
are found analytically and numerically. In acoustically 
active media it is predicted the existence of the stationary 
solitary pulse.  
Then, we consider 1-D relaxing gas dynamics system of 
equations with simple Landau-Teller model of relaxation. 
The possible stationary profiles are shown in 
nonequilibrium degree- stationary wave speed bifurcation 
diagram. The field of weak shock wave instability is 
shown in this bifurcation diagram. Unstable shock wave 
disintegrates into the sequence of solitary pulses described 
by the general acoustical equation. 

2 General acoustical equation 

2.1  Equation and low- and high- 
frequency limits 

The general acoustical equation  has the form [9]:  
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where  ,/0 MTc ∞∞ = γ  MTc /000 γ= are the speeds 
of the high frequency  and the low frequency sounds; 

∞∞∞ = VP CCγ , 000 VP CC=γ ; TKVV SCCC τ++= ∞0 ,  
)1(0 +++= ∞ TKPP SCCC τ  are the low frequency 

specific heats in vibrationally excited gases at constant 
volume or pressure; 000 ,, τρT  are the stationary values; 
M  is the molecular mass; 00 TQS τ= is the 
nonequilibrium degree; ),( 000 ρττ T= ; 

0
)( TTeK dTdEC == ; 00 lnln TT ∂∂= ττ ; 

)/1/1(3/4 ∞∞∞ −+= PV CCmχημ , 
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)/1/1(3/4 000 PV CCm −+= χημ  are the high frequency 
and the low frequency shear viscosity – heat-capacity 
coefficients; 2/)1( +=Ψ ∞∞ γ  is the high frequency 
nonlinear coefficient; 0Ψ  is the low frequency nonlinear 
coefficient. It is important that the coefficient 0Ψ  depends 
on the nonequilibrium  degree S  and can be even 
negative. Eq. (2) is valid for the weak dispersion 

1~/)(~ 222
0 <<−= ∞∞ θcccm . 

For waves travelling in one direction 
( 0/~ ρρρ = , 00 /,/)( τθτς tyctcx =−= ∞∞ ), Eq. (2) 
reduces to: 
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where 0
22/~ ρτμμ sc= , ∞Ψ=Ψ γγ /~

000 , ∞= VV CC /0ν . 

In the low frequency  approximation ( ρθρ ~~/~ y∂∂ ), Eq. 

(3) reduces with an accuracy to 3~ θ  to the modified 
Kuramoto-Siwaszynski equation:  

ςςςςςςςςςς ρκρβρμρρρ ~~~~~~~~~
0y ++=Ψ+ Σ  (4) 

In Eq. (4) ξμμ ~~
0 +=Σ , 2

0000 2/~ cτρξξ = , where 
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is the second viscosity coefficient, 
22

00 /~/~~
∞∞ == VVVV CCCC ξβκ  (with neglect of 

ξμμ ~~,~~ 0
2
0 ). For 00 >VC , all these coefficients are 

negative if the second viscosity coefficient is negative, that 
is, for ( ) 0<+− ∞ KVT CSCτ .  

In the high frequency approximation ( ρθρ ~~/~ 1−∂∂ y ), 

Eq. (2) reduces (with an accuracy to 2~ θ ) to the Burgers 
equation with a source and integral dispersion  

ςρβραρμρρρ ςςς d~~~~~~~~~
y ∫−−=Ψ+ ∞∞∞    (5) 

where 2
00

22
00 /~

∞∞∞ = cCC VV τρξα  is the dimensionless gain 

(at 00 <ξ ) of the high frequency sound, 

∞∞≈ VV CC /~
0αβ  is the dispersion coefficient. The 

solutions of Eq. (4) and (5) are well known. The 
shortcoming of these equations is their disability to 
describe a nonstationary evolution of disturbances with a 
wide spectrum. Moreover, a spectrum of their stationary 
structures is wider than their application region. 
The evolution of a disturbance with an arbitrary spectrum 
must be investigated on the basis of the complete equation 
(3), as in this study. 

2.2  Stationary structures 

For  00 >Ψ , 00 >VC  and the negative second viscosity, 
Eq. (3 ) describes three stationary structures that are shown 
in Fig. 1 [10]. 

 

Fig. 1.  Stationary structures of Eq. (3). 

 
The most interesting structure is strongly asymmetric 
solitary pulse (curve3, Fig. 1) with the shock front width 

1/~~ <<Σ∞ μμ  and exponential trail  

∞ΨΨ= 2/~exp~~
0ςνρρ p    (6) 

where )~2/(4~
0Ψ−Ψ−= ∞Σνμρ p . 

2.3  Numerical simulation of equation 
(3) 

The initial step-like disturbance with amplitude 
)~/(2~~

0Ψ−Ψ−=> ∞Σνμρρ cr  transformed to the first 
stationary structure (curve 1, Fig. 1). The second structure 
(curve2, Fig. 1) was obtained for 

)~2/(2~~~
01 Ψ−Ψ−=>> ∞Σνμρρρ crcr .  The steps with 

amplitudes 1
~~

crρρ <  were unstable and broke down into a 
periodic sequence of stationary pulses (Fig.2). Each pulse 
had previous form and amplitude pρ~ (curve3, Fig. 1). 
Thus, such pulse is autowave (self- wave), whose form and 
amplitude depend on parameters of the nonequilibrium 
medium only. 

 
Fig. 2.  Nonstationary disintegration of a small-amplitude 

step into pulse autowaves 

The bell-like disturbance (Fig. 3a) transformed into the 
same pulses and roll waves in trail (Fig. 3b). These roll 
waves were autowave too. Their amplitude and period did 
not depend on amplitude and square of the initial bell-like 
disturbance. 
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Fig. 3.  Nonstationary disintegration of a bell (a) into pulse 

and roll autowaves (b) 
 

3 Gas dynamic relaxation system 

3.1 Shock adiabats in Nonequilibrium 
Medium 

The initial system of gas dynamics contains Eq. (1) and the 
following equations: 
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where PT ,,,v ρ  are, respectively, the velocity, 
temperature, density, and pressure,  IQ =   is the heat 
removal and xvtdtd ∂∂+∂∂= /// . 
The gas with stationary nonequilibrium has the five fields 
of the nonequilibrium degree S with qualitatively different 
properties [8,12,13]: 

Field 1: ( )TVKth CCSS τ−=< ∞/ . Here, we have the 
positive second (bulk) viscosity 00 >ξ , the positive 
dispersion ∞< cc0 , and the positive nonlinearity 
coefficient 2/)1( 00 +≈Ψ γ  similar to equilibrium media. 

Field 2: nth SSS << . The dispersion and the second 
viscosity are negative ( 00 <ξ ; ∞> cc0 ). In fields 2-5 
media are acoustically active. The low frequency nonlinear 
coefficient 00 >Ψ . Here nS is defined from the equation 

0)(0 =Ψ nS , where 
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Field 3: 
T
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=<< ∞ . Here, 0<ξ , 

∞> cc0 , 0~
000 <Ψ=Ψ γ . 

Field 4: PV SSS << ; 
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+
= ∞

T

KP
P
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S

τ
. ; Here, 0<ξ , 

0~
0 >Ψ , 00 <VC , 00 >PC . 

Field 5: PSS > . Here, 0<ξ , ∞< cc0 , 0~
0 >Ψ , 00 <VC , 

00 <PC . 

In relaxation gas dynamics, two shock adiabats drawn 
through a given initial point ( 00 ,VP ) are considered. One 
corresponds to total equilibrium of the final states of the 
gas and, therefore, is called the equilibrium adiabat. The 
other, referred to as “frozen” assumes that the relaxation 
processes do not proceed at all. These adiabats can be 
obtained from the general Rankine-Hugoniot expression  
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101010 =+−+− PPVVεε  

where subscripts 0 and 1  correspond to stationary states 
before and after the shock front, ρ/1=V  is the specific 
volume, ε  is the specific inner energy. 

The frozen adiabat corresponds to 000 ETCV += ∞ε , 

111 ETCV += ∞ε , where MPVT = , from which it follows 
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The equilibrium adiabat corresponds to 
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For Landau-Teller dependence  
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ρ
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and an equilibrium vibrational energy in harmonic - 
oscillator form 
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=

T

Ee θ
θ , 

where B , b, and θ  are constants, we obtain [12]: 
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For 0≠S , the equilibrium adiabat has two branches with 
two asymptotes ∞→P  (Figure 4).  

 

Fig. 4. An equilibrium adiabat. Initial states 1-5 
corresponds to five different fields of nonequilibrium 

There is the point ( 22 , crcr VP ) where the frozen and 
equilibrium adiabats meet. With increase of the 
nonequilibrium degree, the initial point ( 00 ,VP ) on the 
equilibrium adiabat moves from the upper branch to the 
lower branch. 

3.2 Shock Wave Structures. Bifurcation 
Diagram   

The system of equations (7) for stationary waves 
propagating with the speed D  reduces to one equation 
[12]  
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where Dtxz −= . 

The shock wave structure after the sharp front dρ , which 
is equal to  
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was obtained using the numerical solution of an equation 
(8). 

Eq. (8) can be investigated on the phase plane. All results 
can be presented in the bifurcation diagram (Figure 5 d). 
Here, the implicit forms of boundaries 21, crcr DD  are 
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On this diagram 2crD  is the speed, which corresponds to 
case when 0)( =dA ρ . On the shock adiabats it means that 
chord meets the point 22 , crcr VP   and shock wave has the 

step-wise structure. The speed 1crD  corresponds to case 
when high-frequency sound speed equals flow speed 
behind the front of the shock wave. tD  is speed when low-
frequency sound speed equals flow speed behind the shock 
wave front. In field III of the bifurcation diagram the 
solutions of (7) in form of shock wave propagating with 
constant velocity is not exist. 

3.3 Weak shock wave evolution 

By the numerical solution of initial system of gas dynamic 
equations (1), (7) we obtained the following results.  
The strong shock waves corresponding Zones I and II on 
the bifurcation diagram are evolutionary stable. In the 
Zone III the condition mechanically stability of shock 
waves (the flow behind the shock wave front must be 
subsonic) is broken.  

For ethr SSS <<  gas behind the shock wave front is 
acoustically active and its dispersion is negative. 
Therefore, a small step-wise disturbance is transformed 
into the sequence of autowave pulses (Fig. 5c) with 
amplitude dρ or autowaves with non-zero asymptote (Fig. 
5b), propagating with  )(1 SDD cr= . For weak 
nonequilibrium degree, these autopulses have the shock 
front and exponential “trail” (6). 
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Fig.5 Weak shock wave evolution (a,b,c) and bifurcation diagram (d) 

 

For  eSS >  gas behind the shock wave front is 
acoustically passive and its dispersion is positive. 
Therefore, a small disturbance is transformed into one 
autowave with non-zero asymptote (Fig. 5a), propagating 
with  )(SDD t= . 

Conclusion 

Action of vibrational nonequilibrium sustained by heat 
source is more significant for weak shock waves. Weak 
shock waves are unstable  in acoustical active 
nonequilibrium media. In dependence on nonequilibrium 
degree, the unstable wave  accelerates  and disintegrates   
into sequence of self-sustained structures: autopulses or 
autowaves  with non zero asymptote.  
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