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The acoustic wave propagator (AWP) is the application of the time evolution operator on the acoustic wave 
equation for stationary systems in a polynomial expansion of Chebyshev polynomials. It allows to increase the 
time step by more than one order of magnitude compared to finite difference time domain (FDTD) codes. In 
contrast to other implementations of the AWP the spatial differentiation is carried out with finite difference 
techniques because this allows the use of the perfectly matched layer formulation as absorbing boundary 
conditions. The formulation includes the direct implementation of acoustic sources with sinusoidal time 
evolution. Other sources can be synthesized by their Fourier components. For the calculation of large areas the 
explicit formulation of a large system matrix can be avoided by calculating the propagation equations for each 
time step at row and column level repeatedly which reduces memory requirements notably. This procedure and 
the suitability of the finite difference approach for parallelization makes the extension to fully three dimensional 
calculations possible. Examples for benchmark problems with sound propagation in air and water are given.  

Introduction 

Over many years finite difference time domain (FDTD) 
schemes have been very popular for the numerical 
simulation of acoustic propagation in the time domain. The 
method is widely used because it is simple to implement 
and it can cover a wide range of applications. The use of the 
perfectly matched layer (PML) boundary as an efficient 
absorbing boundary condition for open space propagation 
has increased its popularity. One of the drawbacks of 
FDTD codes is the coupling between the spatial step size 
and the step size in time by the sound speed and the 
Courant number. This leads to very short time steps in order 
to maintain stability. An efficient way to overcome this 
problem is the propagator concept that was originally 
introduced by Tal-Ezer and Kosloff [1] to solve the time 
dependent Schrödinger equation in quantum mechanics and 
was transferred to the acoustic wave equation by Pan and 
Wang [2,3] who named the method acoustic wave 
propagator (AWP). This method for solving time dependent 
wave equations for systems with stationary coefficients has 
theoretically no limit for the time step and practically 
allows time steps much larger than FDTD codes.  

Acoustic propagator 

Formulation 

The linearized acoustic wave equation can be written as a 
system of two first order partial differential equations with 
the quantities pressure p and velocity vr  and the material 
parameters sound speed c and mean density ρ0 
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In compact notation this system of PDEs can be written as  

 0=⋅+
∂
∂ φφ H
t

 (2) 

with p and vr  written in vector notation as φ and the matrix 
operator H containing the spatial derivative operator that 
will be applied to pressure and velocity. 
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Eq.(2) can be solved formally as 

 ( ) ( ) ( )0,, 0 txetx tt φφ ⋅= −−H  (4) 

under the assumption that the operator H is not time 
dependent. This is the case for stationary acoustic problems 
with material parameters c and ρ0 being constant in time, 
but not necessarily in space. Eq.(4) describes the time 
evolution of the system stating from the known state at time 
t0 to time t.  
The actual calculation of the solution is carried out by the 
expansion of the operator ( )0tte −−H  in a polynomial series 
with terms of matrix H. Especially well suited is an 
expansion with Chebyshev polynomials as 

 ( ) ( ) ( )HH ′−= ∑
∞

=

−−
kk

k
k

tt TttIe 0
0

0 α  (5) 

with maxλHH =′  being matrix H normalized by its 
maximum eigenvalue. Tk denominates the Chebyshev 
polynomials and Ik stands for the modified Bessel functions 
of first kind and k-th order. Constants ak are ak = 1 except 
for a0 = 2. The Chebyshev polynomials are recursively 
defined as Tk+1(H´) = 2 H´ Tk(H´) – Tk-1(H´) and T0(H´)=1, 
T1(H´)=H´  
The recursive definition of the Chebyshev polynomials has 
the convenient effect that for the calculation of the 
expansion in Eq.(4) the term of order k+1 can be calculated 
with just one multiplication by the matrix H´. In the actual 
code this amounts not even to a matrix-matrix 
multiplication but just a matrix-vector multiplication since 
the operator is always applied to the state vector φ.  
Theoretically there is no limit for the time step size (t-t0). 
But practically the representation of the floating point 
number in the computer limits the time step size. Without 
special emphasis to this point increase in the order of factor 
10-20 could be reached for the examples presented in 
section 3.  
In an implementation on a computer the series of Eq.(5) has 
to be truncated after convergence is reached. But the 
number k necessary for convergence depends on the step 
size (t-t0). The series of products Ik ⋅Tk is made up of 
progressively increasing terms of alternating positive and 
negative sing before converging to the result for the time 
step in question. Thus a limit of k has to be set in order not 
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to reach the limit of precision in double precision floating 
point arithmetic. In practice the limit depends on the 
numbers in the matrix H and is therefore determined by the 
material parameters and the size of the calculatory domain.  

Spatial derivatives 

For the evaluation of the spatial derivative this scheme uses 
a finite difference approach. Pan et al [2,3] have proposed a 
scheme with pseudospectral derivatives which is certainly 
more accurate, but has the drawbacks that the PML 
boundary can apparently not be applied satisfactorily and 
additional precautions have to be taken to avoid Gibbs’ 
phenomenon at discontinuities of the material parameters. 
The scheme uses the staggered grid of Yee [4] with the 
evaluation points for pressure and velocity separated by 
half a step shown in Fig.1. The staggered grid ensures that 
the chosen approximated derivative with the next neighbors 
only 
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has second order accuracy. Δx is the spacing between points 
of the same type (e.g. pressure) and not between points of 
pressure and velocity. Higher order approximations have 
produced inaccuracies at interfaces between different 
media. 

  

Fig.1 Calculation grid for 2 dimensions with grid points for 
p,.vx and vz separated by half the spatial step size. 

The calculation of large areas can be facilitated by an 
implementation that never actually formulates matrix H but 
calculates the needed derivatives of pressure and velocity 
for each point and each application of the matrix on the 
vector φ. This procedure drastically reduces the demand of 
computer memory and thus makes calculations of large 
areas possible. It requires only scalar multiplications 
instead of matrix vector products. On the other hand the 
number of multiplications needed is much higher which 
leads to an overall increase of computing time roughly by a 
factor of 2 in a Matlab implementation.  
The accuracy of the scheme could be increased by the use 
of better spatial differencing methods, probably at the 
expense of coding simplicity, memory requirements and 
run time though. 

PML boundaries 

In order to ensure low reflections from the borders of the 
calculatory domain the Perfectly Matched Layers (PML) 
boundaries according to Bérenger [5] are used. This is a 

standard technique in FDTD codes that produces low 
reflections by adding artificially damped regions at the 
edges of the calculatory domain. In spite of the increased 
demands in computer memory Bérenger’s original split-
field formulation was used rather than stretched coordinate 
formulation of the PML because it is simple to code and 
integrates well into the matrix formulation. In the split field 
formulation pressure p is artificially separated in px and pz 
in the PML regions and only the components perpendicular 
to the respective edge are damped. In two dimensions this 
leads to a system of 4 equations instead of the three 
equations of Eq.(1) 
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with the damping parameters qpi and qvi and the observable 
quantity pressure p in the PML region being the sum of the 
artificially separated values px and pz. 
In the matrix H the damping terms lead to additional terms 
on the main diagonal in the damped regions. The damping 
factors qpi and qvi were chosen with polynomial growth 
starting from the beginning of the damped region at xig 
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ΔRi is the width of the PML boundary in the xi direction.  
For water as fluid good results were achieved with values 
of qp0 = 750 kg/(m s3) and exponent α = 2.5 and a width of 
the PML boundary of approximately one wavelength. 

Three-dimensional formulation 

Eq.(1) describes the problem in Cartesian coordinates in 
either two or three dimensions with p, vx, vz (and vy in 3 
dimensions). For three dimensional calculations the demand 
for computer memory and calculation time rises 
enormously. For the special case of rotationally symmetric 
problems this can be avoided by a formulation in 
cylindrical coordinates which keeps the problem 
mathematically two-dimensional. The only difference is an 
additional term in the Euler equation (Eq.(1) upper 
equation) which is replaced by 

 0vv 2
0

2
0 =∇++
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r
cp

t
r ρρ  (9) 

and the notion that the velocity vr  now consists of the 
components vz in z direction and vr in radial direction. 
Consequently the spatial derivative operator is now defined 
as ( )zr ∂∂∂∂=∇ ,

r
. 

Acoustical sources 

In the presence of an acoustical source Eq.(2) is modified 
with a source term ),( txS

r
 on the right hand side. The 

solution of the resulting equation is found as 

Δx 
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For a source with a sinusoidal time evolution 
( ) )sin()(, txtxS ωσ ⋅= rr

 this integral can be solved 
analytically as 
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Sources with a different time evolution can be synthesized 
by their Fourier components. In order to calculate the 
spatial derivatives properly the source has to be modeled as 
a small area rather than a single point. 

Examples 

In this chapter three examples of the code are presented. 
The first is a two-dimensional calculation with a sinusoidal 
source compared to the pressure field of a two-dimensional 
analytic point source. The second example shows a snap-
shot of the evolvement of one sinus-pulse in a layered 
medium consisting of water, air and a sloped sediment. The 
third example gives a comparison with a frequency domain 
calculation for another layered medium. 
Fig.2 shows the pressure field of a sinusoidal source with a 
frequency of 150 Hz at a depth of 50 m after 100 ms in a 
two-dimensional calculation. The horizontal black lines at  
z = 0 m, z = 100 m and the vertical line at x=200 m mark 
the beginning of the damped PML domains. 
 

 

Fig.2 Sinusoidal 2D source in water. 

A comparison of the pressure on a horizontal line at source 
depth with the analytical solution of a point source at the 
same position (dotted line) is presented in figure 3. In the 
near-field the differences between the simulated, extended 
source and the idealized point source is clearly visible. In 
the far field after approximately 10 wavelengths the 
pressure field is virtually identical for the two cases. 

 

Fig.3 Comparison with point source. 

Figure 4 shows a snapshot of a short pulse with one 150 Hz 
sine wave in a three-dimensional calculation with rotational 
symmetry after 500 ms on a logarithmic scale.  

The medium is layered with air on top, water in the middle 
and a sloped sediment beneath. The source was located in 
the water at a depth of 150 m. 

 

Fig.4: Pulse in layered medium (air /water/sediment). 

The sediment is modeled as a fluid and not as a solid. The 
PML regions are not shown in this figure. The dotted lines 
mark the interfaces between the air, water and sediment.  
The reflections of the pulse from the interface with the air 
layer and the sediment can be observed. A part of the 
energy was injected in the sediment region and propagates 
with higher sound speed.  
Fig.5 shows the results of a different calculation with 
another layered medium with a 40 Hz sinusoidal source in 
the air. The position of the source was at 50 m, the 
horizontal interfaces were at 100 m (air/water) and 200 m 
(water/sediment). The calculation covered the time up to 
1.7s so that a stationary state has been reached in the entire 
domain. The results show phase fronts propagating through 
the medium with maximum amplitudes constant in time for 
each point. The maximum amplitudes, normalized with the 
source strength, are equal to the transmission loss in the 
computational domain (Fig.5). The calculation shows the 
grating lobe pattern in the air produced by the partial 
reflection at the interface and the cone beneath the source 
where sound is introduced into the water. For shallower 
angles at larger distances the conditions for total reflection 
according to Snell’s law are met and sound is only 
introduced into the water via the evanescent wave at the 
interface that can also be observed. 
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Fig.5 Transmission loss in a layered medium in dB.  

These results were compared to an analytical calculation of 
the transmission loss in frequency domain with a Green’s 
function approach. Figure 6 shows the differences between 
the two calculations in dB. The results were normalized to 
produce the same value at the point 10 m to the right of the 
source in order to avoid the nearfield discrepancies caused 
by the different source formulations. 

 

Fig.6 Difference between propagator calculation and 
analytical solution in the frequency domain in dB. 

The differences between the results of the propagator 
scheme and the analytical calculation are below 1 dB for 
most of the calculatory domain. Exceptions are the 
locations of the minima in air and water. These strong 
minima, however, are very sensitive to small differences in 
the calculations and would not be measured to that extend 
in an actual measurement with background noise. 
Compared to a frequency domain method the calculation 
for this example needed much more time (several hours). 
But such a harmonic problem is not the typical application 
for a time domain code that is best suited for the calculation 
of short pulses. This example was just included for the 
comparison of the results of the quasi stationary that was 
reached in the time domain. 

5 Conclusion 

The acoustical wave propagator provides a method to 
increase the time step size for time domain calculations of 
acoustic propagation. With spatial derivatives formulated 
by finite difference methods it gives an efficient scheme to 
accurately calculate large domains in two dimensions and 
problems in three dimensions with rotationally symmetry. 
The formulation allows the use of the efficient PML 
boundary conditions as termination to simulated free field 

conditions. Acoustic sources can be included in the 
formulation. Results were presented that show good 
agreement with analytical calculations both in time domain 
and in frequency domain for a simulation of a stationary 
acoustic field with a continuous monofrequent source. 
Compared to FDTD computations increases in the order of 
one magnitude could be reached in the time step size, 
depending on the material parameters of the problem and 
the size of the computational domain. 
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