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The far field pressure of a turbulent flame can be determined using the standard boundary element method 
(BEM) if the sound pressure or its derivative is known at a closed surface (control surface) surrounding the 
flame, as long as the medium outside the control surface is homogeneous. If temperature gradients are present, 
the homogeneous Helmholtz equation is no more valid. In that case, the wave equation can be rewritten in form 
of an inhomogeneous Helmholtz equation with a source term that depends also on the unknown pressure. Using 
the “Dual Reciprocity BEM” the integral form of this wave equation can be solved involving only surface 
integrals, so that the sound field can still be computed from field values at the control surface. The cases under 
study consider a volume of hot gas with a temperature distribution that is prescribed or obtained from a CFD 
simulation.  The influence of the temperature gradients on the sound field can be evaluated by comparison of 
characteristic quantities like sound power and radiation patterns, with and without temperature gradient.  

When the medium outside S is homogeneous (Fig. 1a), the 
sound field can be obtained by applying the standard BEM. 
Thus, the sound pressure at all points outside S is given by 
[4] 

1 Introduction 
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The prediction of the sound radiated from a turbulent flame 
is a very difficult task and cannot be handled efficiently 
with one method alone because of the disparity in time and 
length scales of the sound production and the sound 
propagation. 
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)(In previous works [1-3], a hybrid approach combining a 

Large Eddy Simulation (LES) with a Boundary Element 
Method (BEM) was implemented and used to compute the 
sound radiation of open turbulent flames. A key condition 
for the validity of this approach is to place the Kirchhoff 
surface in a homogeneous medium. 

When the medium outside S is not homogeneous, Eq. (1) is 
no more valid. But a similar expression can be deduced if 
the inhomogenities are written in form of a source 
distribution q, as it will be shown next.  In many cases, it may be difficult to ensure that the 

Kirchhoff surface lies in a homogeneous medium. 
However, a large source region would demand a large 
computational domain leading to high computational effort. 
For these cases, the presence of an inhomogeneous medium 
has to be taken into account.  

Here, it is assumed that the inhomogeneous region occupies 
only a volume Ω and the rest of the fluid is homogeneous 
(see Fig. 1b). In this region, the density ρ and sound speed 
c may vary locally and differ from the ambient values 

0ρ , . 0cIn the present work, the propagation of sound waves in an 
inhomogeneous medium is studied using an extension of 
the BEM, namely the Dual Reciprocity BEM (DRBEM).  

To find the sound field outside S, the exterior space is 
divided in two regions and S is subdivided in two surfaces 
S0 and S1 as shown in Fig. 2. Region I is given by the 
volume Ω and limited by the surfaces S2 and S1. Region II 
is the homogeneous zone outside S0∪S2. 2 Sound radiation of the flame 

 

For the calculation of the radiated sound of a turbulent 
flame, it is assumed that at least one acoustic quantity, for 
example pressure p or particle velocity vn is known at a 
closed surface S that encloses the flame (see Fig. 1). 

 

Fig. 2 Surfaces and domains for the sound field 
determination. 

Two differential equations have to be solved 

( )
( ) IIRegion 0

IRegion 
2
0

2

2
0

2

=+∇
=+∇

II

I

pk
qpk

                  (3) 
Fig.1 Models for an open flame; a) in a homogeneous 

medium and b) with a non homogeneous zone. with the boundary conditions 
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where vnS is the known particle velocity. 
The integral equation for region II is given by Eq. (1) with 
the integration surface being S0∪S2. The integral equation 
for region I is given by [5]   
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(5) 
Eq. (5) has an additional term with respect to Eq. (1), which 
corresponds to a volume integral over the source 
distribution q. To avoid the computation of the volume 
integral, the Dual Reciprocity method is applied to replace 
the volume integral with a series of surface integrals. This 
substitution is accomplished by expanding the source 
distribution in a set of functions fj  

∑=
j

jj fq α                                 (6) 

which are associated to another set of functions ψj through 
the inhomogeneous Helmholtz equation 

( ) jj fk =+∇ ψ  22  .                         (7) 

After applying the BE procedure to Eq. (7) and inserting the 
results together with Eq. (6) into Eq. (5), the final 
expression for the sound pressure in region I is 
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Assuming that the source term q is known at some points of 
the volume, the coefficients αj can be determined. 
Considering N points at the surface S1∪S2 and L points 
inside the volume Ω, and truncating the series (6) at 
M=N+L terms, M coefficients αj can be computed by 
solving the matrix equation: 

bF 1−=α  .                                   (9) 

Here α and b are vectors with M components and F is a 
M×M matrix. 
The discretization of Eq. (8) leads to the following matrix 
equation 

αψψψρω 
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If the discretization is made at the same N points at the 
surface and L points inside the volume, and the boundary 

conditions of Eq. (4) are taken into account, the pressure at 
the discretization points can be obtained. 

3 Temperature gradient 

In this work, the inhomogeneous region will be considered 
to have a local temperature distribution which is constant in 
time.  
Since the sound speed and the density depend on the 
temperature, the wave equation becomes [6] 
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By inserting the relation for perfect gases c2=γ RT in Eq. 
(11), with γ and R constant, we get 
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The wave number k=ω/c depends also on the temperature. 
Adding and subtracting the term  and rearranging the 
terms we obtain:  
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Eq. (13) shows that the source term q contains the 
derivatives of the unknown variable pI. In this case, pI has 
to be expanded in a series of functions dj in a similar way as 
was performed for q, so that its derivatives can be defined 
in terms of the derivatives of the known functions dj: 
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4 Numerical example 

The procedure described in section 3 for an open flame can 
be very well applied to study the sound radiation of a semi 
closed flame. It is assumed that the flame is placed inside a 
cylindrical combustion chamber that has one open end. The 
sound waves coming out through the opening are 
characterized by the velocity at the opening. On the other 
hand, the sound waves in the chamber may induce 
vibrations of the chamber walls that radiate sound to the 
outside and contribute to the total emitted sound.  

 
Fig. 3 Velocity distribution at the cylindrical surface. 
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In our example, the chamber walls are assumed to be rigid, 
so that no vibrations arise. Thus, the normal velocity at the 
walls is zero. At the open end, a radial velocity distribution 
is considered (see Fig. 3). Outside the combustion chamber, 
next to the open end, a temperature distribution 3
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-exp)( µ                 (15) where jj yxr −= is the distance from the field point x  to 
the surface or interior point y . in a region of length LT is prescribed. In Eq. (15), A and x0 

are constants, µ=ln(Tm/ Ta) and Tm and Ta are the maximum 
and ambient temperature respectively. 

In a previous work [7], these functions were tested using a 
“spherical flame” with different source distributions. For 
some specific type of sources, the problem has an analytical 
solution. The numerical solutions showed very good 
agreement with the analytical ones. 

The effect of the temperature distribution was studied by 
varying Tm and LT. Three different values of LT were 
considered: 0.7R, 1.4R and 2R. The maximum temperatures 
investigated were 50°C, 100°C, 200°C, 300°C, 400°C and 
500°C. In Fig. 4, the temperature distribution is shown for 
two values of Tm. 

The results of the calculations are presented in figures 6 – 
9.  In first place, we analyze the effect of the temperature 
distribution on the sound power. The sound power increases 
at low frequencies and reaches some approximately 
constant value at high frequencies. This constant value 
decreases uniformly with increasing Tm. This effect could 
be explained considering that more energy is reflected back 
into the hot region if the temperature is higher. 

 

 

Fig. 4 Temperature distribution. 

The variation of the sound speed and the density with the 
temperature was obtained by using the relations: 

00336.1)( 77819.360    ,    )(05.20 −°=°= KTKTc ρ  . 

Fig. 6 Dependence of the sound power with the maximum 
temperature. 

For the numerical computation of the sound field, the 
combustion chamber was modeled with a cylinder of length 
0.5 m and a radius of 0.22 m. The cylinder had 768 
elements. The inhomogeneous region was limited by a 
paraboloid of revolution. For LT=0.7R the surface had 224 
elements, for LT=4R, the surface had 800 elements. The 
number of interior points for the approximation of the 
source term was 200 for the shorter region and 500 for the 
larger one. The surface models and interior points are 
shown in Fig. 5. 

The length of the hot region appears to have less influence 
on the sound power than the temperature itself. In Fig. 7, 
the sound power for Tm=773°K and three different values of 
LT is shown. The differences can be seen principally at high 
frequencies and they are small.  

 

 
Fig. 5 Surface models and interior points (LT=2R). 

The approximation functions fj and associated functions ψj 
that were used are given by Fig. 7 Dependence of the sound power with the length of 

the hot region. 
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5 Conclusion 

The sound propagation in an inhomogeneous medium can 
be treated by using the Dual Reciprocity BEM if the 
differential equation can be written as an inhomogeneous 
Helmholtz equation with source terms appearing at the right 
hand side. This approach was applied to study the 
propagation of sound waves coming from a combustion 
chamber in the presence of a hot region with temperature 
gradient at the chamber exit. The sound waves are refracted 
away from the axis producing broader radiation patterns 
and partially reflected leading to a decrease of the radiated 
power.  
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