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The Boundary-Element-Method is a powerful tool for the simulation of sound radiation and scattering.
Classically, it was developed for the free 3D-space, but it can be modified easily for half-space solutions
as long as the half-space is delimited by a perfectly rigid or soft plane. In this case, the Green’s function,
the core of the Bem, can be derived from a simple image source ansatz, which however cannot be
used for a more general impedance boundary condition. In this presentation, an appropriate Green’s
function will be studied, which is able to describe the sound propagation above an impedance plane and
is suitable for an implementation into a Bem code. It bases on the superposition of sound sources with
complex source points. The numerical evaluation of this Green’s function will be presented along with
several test cases. The computational costs of the developed ”Complex-Source-Point-Bem” (Cbem) in
comparison with a classical Bem together with a discretisation of the impedance plane will be discussed.

1 Introduction

The purpose of the present work is to calculate the
sound field, which is radiated by a vibrating structure in
presence of an infinite plane, which is characterized by
its normal impedance. The boundary element method
(Bem) is well suited for the calculation of the sound ra-
diation of complex structures, but the presence of an im-
pedance plane represents a serious difficulty for the ap-
plication of the Bem. The infinite plane can be approx-
imated by an additional discretized structure. Apart
from the low accuracy, which can be gained with this
approach, the supplementary structure enlarges the set
of equations considerably. Another way is to incorpo-
rate an appropriate Green’s function into the Bem for-
mulation, which fulfills the boundary conditions on the
impedance plane automatically. In literature there can
be found numerous solutions for the Green’s function
describing the sound propagation above an impedance
plane, e.g. [1], [2], [3]. Unfortunately, all those solutions
have singularities for an impedance with springlike reac-
tance and special source-receiver geometries. They are
not suited for an implementation in a Bem code for the
simulation of outdoor sound propagation, since most of
real ground surfaces show springlike impedance charac-
teristics [4]. Also, in [5], which directly focuses on the
Bem, a sufficient solution for this configuration could
not be found. Ochmann presented in [6] a Green’s func-
tion, which seems suitable for an incorporation into a
Bem code, since it does not have any limitations con-
sidering the impedance characteristics of the plane or
the placement of source and receiver. In the following
work this Green’s function and its implementation in
a Bem code will be discussed. At first a brief survey
of the theoretical background will be given, followed
by details about the numerical implementation of the
function. Two test cases will be presented to verify the
implementation. The paper concludes with a investiga-
tion of the accuracy and effectiveness of the new Cbem

formulation in comparison with an indirect Bem and a
discretized impedance plane.

2 Theory

The basis for the Bem is the Helmholtz-Integral-Equation
(Hie), here for exterior problems,

C(~x)p(~x) =

∫

SQ

(
p(~y)

∂g(~x, ~y)

∂~ny
− ∂p(~y)

∂~ny
g(~x, ~y)

)
dSy

(1)

with

C(~y) =





1 ~x in the exterior domain,
1
2 ~x on the surface SQ,

0 ~x in the interior domain.

The core of the Hie is the Green’s function g(~x, ~y). As
solution of the wave equation it describes the sound
propagation between the source point ~y = (xs, ys, zs)
and the receiver point ~x = (x, y, z) and has to fulfill the
boundary condition on the surface as well as Sommer-
felds radiation condition at infinity. For the free-space
case the Greens function is given by

g(~x, ~y) =
e− ikR1

4πR1
(2)

with R1 =
√

(x − xs)2 + (y − ys)2 + (z − zs)2. k is the
wavenumber k = ω/c0 with ω as angular frequency and
c0 the speed of sound in the acoustic domain. The time
dependence exp(iωt) is omitted.

Regarding a half-space problem, the three-dimen-
sional space is separated by an infinite plane Sp, see
Fig. 1. The boundary condition on the plane is given by
the plane’s normal impedance Z

p

vn
= Z on Sp. (3)

As long as the Z = ∞ or Z = 0, which corresponds
to a perfectly rigid and soft plane, respectively, the ap-
propriate Green’s function is given by an image source
ansatz

g(~x, ~y) =
e− ikR1

4πR1
+ Rp

e− ikR2

4πR2
(4)

with

Rp =

{
+1 Z = ∞,

−1 Z = 0.
(5)

In [6] a Green’s function was presented, which are
able to fulfill any impedance boundary condition on the
plane Sp and has no restrictions relating to the position
of ~x and ~y

G(~x, ~y) =
e− ikR1

4πR1
+

e− ikR2

4πR2

+
iγ

2π

∫ 0

−∞

e− ik
√

ρ2+(z+zs+iζ)2

√
ρ2 + (z + zs + iζ)2

︸ ︷︷ ︸
ĝ(−zs−iζ)

e− iγζdζ,

(6)
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Figure 1: Sketch of source ~y and receiver ~x above an
infinite plane

where ρ =
√

(x − xs)2 + (y − ys)2 is the horizontal dis-
tance between ~x and ~y. γ follows from the plane’s nor-
malized impedance, γ = ik/Z0 mit Z0 = Z/(ρ0c0) with
ρ0c0 as impedance of the ambient fluid. The integral
in (6) can be interpreted as line integral over image
sources with a complex source point, ĝ(−zs − iζ). A
more detailed presentation of the theoretical background
of (6) and its derivation and the characteristics of point
sources with complex source points can be found in [6]
and [7]. Eq. (6) does not have any singularities, apart
from grazing incidence when z + zs = 0, i.e. source
and receiver position must not be directly located on
the plane. The integral is convergent for masslike and
springlike reactive parts of the plane impedance. Its
drawback is that it is an improper integral over a fluc-
tuating kernel, which can show a narrow peak at ζ = −ρ.

3 Numerical Evaluation

Due to the difficult kernel in the integral of Eq. (6) an
evaluation of the integral can be quite tedious. A very
reliable method is the adaptive multigrid quadrature,
which is presented in [8]. This quadrature method re-
quires the determination of a lower integration limit.
The integrand Ψ(ζ) can be separated into a decaying
envelope ΨE(ζ) and a oscillating term ΨO(ζ)

Ψ(ζ) =
e− ikr

r
e− iγς

=1/|r| e(k Im{r}+Im{γ}ζ)

︸ ︷︷ ︸
ΨE(ζ)

e− i(k Re{r}+φ+Re{γ}ζ)
︸ ︷︷ ︸

ΨO(ζ)

(7)

with r =
√

ρ2 + (z + zs − iζ)2. Re{ } and Im{ } denote
the real and imaginary part of the quantity in brackets,
respectively. Since Im{γ} represents the damping of the
ground, Im{γ} must be equal or greater than zero and
the exponent in ΨE(ζ) is negative for all ζ ∈ (−∞, 0].
This decaying envelope ensures the convergence of the
integral in (6) on one hand and it provides the possi-
bility of defining a lower limit on the other. We decide
to terminate the integration at ζll where ΨE(ζ) < 10−6.
Fig. 2 shows the kernel of the integral and the compo-
nents of the envelope ΨE(ζ) for z + zs � 0, i.e. for ~x
and ~y close to the plane. For the implementation of the
quadrature algorithm the program package ”mlquad”
from ”CodeLib” was used and the code was adapted to
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Figure 2: Upper panel : Curve of Ψ(ζ) in case
z + zs << 1 for ρ = 30 m, γ = 0.0026 + i0.0026 m−1,

z + zs = 0.06 m, k = 1 m−1. Lower panel :
Components of the envelope ΨE(ζ).

the present integral. ”CodeLib” is a collection of al-
gorithms of the Konrad-Zuse-Zentrum für Information-
stechnik Berlin [9].

In case Im{γ} > 1, the Gauss-Laguerre quadrature
can be applied to solve the integral in (6). This leads to
an enormous acceleration of the calculation. The Gauss-
Laguerre quadrature is defined as

∫ ∞

0

f(η)e−ηdη =

n∑

i=1

w(i)f(η(i)). (8)

By means of a variable transformation with η = −ζ Im{γ}
the integral in (6) can be converted into the appropriate
form,

I =
iγ

2π Im{γ}

∫ ∞

0

e− ikr̃

r̃
eiη Re{γ}/ Im{γ}

︸ ︷︷ ︸
f(η)

e−ηdη (9)

with r̃ =
√

ρ2 + (z + zs − iη/ Im{γ})2. The number of
quadrature points n depends on the curve of the inte-
gral kernel. Our investigations showed, that the sum of
the heights of source and receiver location has the most
influence on the necessary number n. The closer source
and receiver are located to the plane, the more quadra-
ture points are necessary to solve the integral correctly.

The expression for f(η) contains also an exponen-
tially decaying term, namely exp(k Im{r̃}). In case the
decay of the term exp(k Im{r̃}) is considerably more
steep as the decay of exp(−η), the integral can not be
solved by the Gauss-Laguerre quadrature. From this
it follows that this quadrature formula can only be ap-
plied for Im{γ} > 1. However, in this case the Gauss-
Laguerre quadrature is observed to solve the integral
correctly and very fast. A resistance of Im{γ} > 1 can
be found for soft grounds in the higher frequency range.
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4 Test cases

4.1 Soft ground

The test configuration is given by a small cube with
edge length of 1 m, whose surface is driven by a virtual
monopole source in its center [10], [11]. The surface
mesh consists of 54 four-noded quadrilateral elements.
The center of the cube is located 3 m above the infinite
impedance plane, which is located in z = 0, see Fig. 3.
The perfectly soft plane impedance is approximated by a
very high admittance of |γ| =

√
2·10−3. Both a masslike

(Re{γ} > 0) and a springlike (Re{γ} < 0) plane impe-
dance are investigated. Fig. 3 shows the Bem results for
the sound pressure in field points in a distance of 3 m
around the center of the cube, see Fig. 3, for the image-
source Green’s function Bem (Imbem), Eq. (4), and the
complex Green’s function Bem (Cbem), Eq. (6). The
sound pressure was normalized to ρ0c|v̄n|, with |v̄n| as
absolute value of the mean surface velocity of the pulsat-
ing object. For the illustrated benchmark configuration
the results of the Cbem formulation match very well the
results of the Imbem.

  0.05

  0.1

  0.15

  0.2

  0.25

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3: Left panel : Test geometry: Field points
around the radiating cube above an impedance plane.
Right panel : Normalized sound pressure in the field

points: — calculated with Imbem in case of a perfectly
soft plane (Rp = −1); � calculated with the Cbem for

a soft plane with masslike impedance
(γ = 103 + i103 m−1) and × for a soft plane with

springlike impedance (γ = −103 + i103 m−1)

4.2 Perpendicular incidence

In case, source and receiver are arranged one above the
other on a vertical axis (ρ = 0), there exists a exact
solution for Eq. (6)

Gexakt(~x, ~y) =
e− ikR1

4πR1
+

e− ikR2

4πR2

− ik

2πZ0
eik (z+zs)/Z0E1

(
ik (z + zs)

(
1 +

1

Z0

))
.

(10)

For field points far above the impedance plane, where
k(z + zs) is large, Eq. (10) can be simplified to a ”plane
wave”-approximation [12]

Gplane(~x, ~y) =
e− ikR1

4πR1
+

Z0 − 1

Z0 + 1

e− ikR2

4πR2
. (11)

Figure 4: Vibrating sphere above an impedance plane,
the field points are located on a vertical line at

xFP = (0, 0, z)

The geometry of the test configuration can be seen in
Fig. 4. A sphere of radius 0.25 m is located above an
impedance plane with γ = 1+0.5 i. The sphere’s center
is located at (0, 0, 3m), the wave number is k = 1 m−1.
The sphere’s surface is build up by 296 quadrilateral
and triangular elements. The field points are arranged
on a vertical line below and above the sphere’s center
at ~xFP = (0, 0, z). The sphere vibrates with a normal
velocity distribution, which is determined by a virtual
monopole source in the center of the sphere at ~y. Due
to the presence of the impedance plane the velocity vn

is not uniform, but can be obtained by means of Eq. (6).
Thus, the normal velocity vn of the nodes ~x of the sphere
are given by

vn(~x) =
i

ωρ0
Ap

∂G(~x, ~y)

∂~nx
. (12)

Ap is the source strength of the virtual monopole source
in the interior of the sphere.

From Gl. (10) follows the exact sound pressure at
the field points pexact. The error E is a measure for
the deviation of the field point sound pressure from the
exact solution

Ei =

√
|pi − pexakt|2

|pexakt|2
, (13)

with pi as sound pressure at the field points coming
from the ”plane wave”-approximation and the Cbem-
solution. Fig. 5 shows the error curves. The error of the
monopole test Edisc is additionally plotted. Edisc rep-
resents the general discretization error of the numerical
solution, as it was decribed in [10]. It can be seen, that
the error of the Cbem-solution ECBEM is in the order of
magnitude of the discretization error at around 1%. As
expected, the error of the ”plane wave”-approximation
is very high for field points in proximity to the plane.
For field points at larger z, the error decreases and the
approximation converges to the exact solution. This test
verifies the implementation of the Green’s function (6)
into the Bem-application and shows, that the Cbem is
able to approximate excellently the radiated sound field
above an impedance plane.
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Figure 5: Error E of the ”plane wave”-approximation
and of Cbem-solution as well as the discretization error

5 Application of the CBEM

In a first step we investigate the accuracy of the the
multigrid quadrature and the Gauss-Laguerre quadra-
ture within a Cbem simulation and later on we com-
pare the Cbem results to results of an indirect Bem,
where the infinite impedance plane is represented by a
discretized plane model.

The geometrical configuration can be found in Fig. 6.
The center of the vibrating sphere, which was already in-
troduced in Sec. 4.2, is now located at (0, 0, 1m) above
the impedance plane with γ = −1.41 + i 1.66 at f =
400 Hz (forest floor). 100 field points are located on a
horizontal line at ~xFP = ([0.5 : 300]m, 0, 1m). Fig. 7

source

impedance plane, Zp

... 1m
field points

z

x

Figure 6: Vibrating sphere above an impedance plane,
the field points are located on a horizontal line at

~xFP = (x, 0, 1m)

shows the error E, Eq. (13), of the Cbem-solution for
this configuation calculated with the multigrid quadra-
ture ECBEM-mlquad and the Gauss-Laguerre quadrature
ECBEM-GL, respectively. Here, pexact is the field points
pressure, calculated with Eq. (6) by means of a multi-
grid quadrature of the integral term. The discretization
error Edisc is additionally plotted. Again, the error of
both Cbem-solutions, ECBEM-GL and ECBEM-mlquad, is
in the order of magnitude of the discretization error of
2.5 % over a wide range of the horizontal distance x.

At very far distances, for kx > 400 some peak-shaped
deviations from this error level occur. The cause of this
deviations could not be ascertained so far. It seems, that
there occur numerical instabilities for some selected ge-
ometrical configuations, provided that the field points
are very far away from the source.
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Figure 7: Error of the Cbem-solution with multigrid
quadratrure ECBEM-mlquad and with Gauss-Lagurerre
quadrature ECBEM-GL as well as the discretization

error Edisc

In the next step, the impedance plane in Fig. 6 is rep-
resented by a set of planar quadrilateral elements, see
Fig. 8. We investigate two measures of the discretized
plane, 6 × 6 m with 2304 elements and 12 × 12 m with
9216 elements. Since the plane does not have a closed
surface the indirect Bem has been used. The calcu-
lation was carried out with LMS Virtual.Lab Rev.7B.
Fig. 9 shows the error of the field points pressure for the
two planes in comparison with the previously discussed
ECBEM-GL. It can be clearly seen, that outside the dis-
cretized plane areas the error becomes huge (the edges
of the planes are indicated by the arrows, labeled with
3m and 6m). With increasing x the sound field becomes
more and more the sound field of an monopole source in
free space, therefore the enormous deviations from the
exact solution occur at the outlying field points. But
also at the field points above the plane model a large
error is detected, even near the middle of the planes.
The increased edge length of the greater plane does not
enhance the results much. The error curves show, that
the Cbem simulates the radiated sound field above an
impedance plane with a very high grade of accuracy,
which can not be reached by using a discretized plane
model. The cost for the different simulation approaches

Figure 8: Vibrating sphere above a discretized
impedance plane
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Figure 9: Error of the sound pressure at the field
points for the different simulations

can be found in Tab. 1. All calculations were done on
a desktop PC with Intel Pentium D Dualcore, running
at 3.20 GHz, equipped with 2.00 GB RAM, OS Win-
dows XP. BemLab is our in-house Matlab-based BEM
code, described in [7], [13]. The multigrid quadrature

Method Software Time needed
Cbem-mlquad BemLab 4 h
Cbem-GL BemLab 0.5 min
indirect Bem, 6 × 6m Virtual.Lab 5 min
indirect Bem, 12 × 12m Virtual.Lab 1.5 h

Table 1: Costs for the different simulation methods

(Cbem-mlquad) of the integral term of Eq. (6) has com-
paratively high costs. At present the Cbem in combi-
nation with a Gauss-Laguerre quadrature (Cbem-GL)
is the most favorable approach regarding quality and
speed of the Bem-calculation.

6 Summary

A Green’s function, which describes the sound propa-
gation above an impedance plane, was successfully im-
plemented in a Bem-code. Due to the characteristics
of the Greens’ function there does not exist any limita-
tion for the applicability of the resulting Cbem. Hence,
the impedance planes are allowed with masslike as well
as springlike reactive parts. All arrangements of source
and receiver points are possible. It could be shown, that
the quality of the Cbem-solution is much higher than of
a comparable indirect Bem-model. Thus, the presented
Cbem represents a very valuable extension of the classi-
cal Bem-formulation for the description of more realistic
models considering outdoor sound propagation.
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