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The actual shape of signal densities has become an important issue when studying speech perception within the 
framework of Signal Detection Theory (SDT). Different authors have found different results as for such density 
shapes in the cases of speech and non-speech signals. While some report Gaussian densities only for non-speech, 
others find the same Gaussian shape for both, speech and non-speech acoustic signals. Some of the claims 
concerning non-gaussian signal densities have been made on the basis of finding “aberrant” Receiver Operating 
Characteristic (ROC) curves. In this paper we try to show that “aberrant” ROCs are not sufficient evidence for 
postulating non-gaussian signal densities; rather, unequal criterion variances can also be the cause of deviant 
ROCs. Our findings seem to indicate that, for non-speech (noise+square wave continuum), unequal criterion 
variances underlie the “aberrant” ROCs, but for speech (ba-pa continuum), non-gaussian signal densities must 
also contribute to this effect.  

1 Introduction

Analyzing the shape of signal densities evoked by auditory 
stimulus is interesting both methodologically and 
theoretically. On the methodological side, it must be 
remembered that a common practice in speech perception 
research is to study how subjects identify and discriminate 
different speech sounds. Early research had emphasized the 
use of proportions as the independent variable of the 
experiments, either the percentage of assigning a specific 
label in identification or the proportion of correct responses 
in discrimination. The use of proportion correct has 
threshold implications and therefore the assumption that 
using this measure is not theory bound is not tenable [1], 
[2]. Being this true, there seems to be no reason to avoid the 
use of more powerful psychophysical models as those 
derived from Signal Detection Theory (SDT). As a matter 
of fact, different researchers have followed this track [2], 
[3], [4], [5]. However, all the aforementioned studies, 
framed within SDT, have assumed signal distributions of 
Gaussian shape and equal variance, along with zero 
criterion variance, without careful checks of these 
assumptions. Thus, from this methodological perspective, 
the correctness of their conclusions is, at least, partially 
bound to the correctness of such assumptions. 
Theoretically, the shape of signal densities has been used in 
the debate concerning the possible existence of processing 
routines especially designed to handle speech signals [6], 
[7], [8]. For instance, López-Bascuas found that an 
improved signal detection model allowing for estimates of 
unequal criterion variances could fit a noise-buzz 
continuum but not a speech /ba/-/pa/ continuum. Further 
analysis indicated that the failure of the model with the 
speech sounds could be attributed to the non-Gaussian 
shape of the speech densities [7]. The implication is that a 
fundamental difference between the processing of speech 
and non-speech signals might be reflected in the shape of 
the underlying sensory distributions. 
Schouten and van Hessen tested explicitly the gaussian 
assumption for a /pak/-/tak/-/kak/ speech continuum and for 
a non-speech continuum varying in intensity [9]. They 
measured response distributions by means of a non-
numerical magnitude estimation procedure and concluded 
that all underlying densities for each continuum were 
Gaussian. However, Pastore and Macmillan reanalyzed  
Schouten and van Hessen´s data and their analyses point to 
a different conclusion [10]. In particular, Pastore and 
Macmillan constructed Receiver Operating Characteristics 
curves (ROCs), an analysis that assumes an ordinal 
relationship between the rating responses and the decision 

axes. According to the standard (Gaussian-equal variance) 
SDT model the theoretical ROC must run from point (0,0) 
to point (1,1), keep above the major diagonal, be concave 
downward and it must also be symmetric about the minor 
diagonal. More simply stated: Z-transformed ROCs must be 
linear [11]. The empirical ROC curves for non-speech 
seemed to accommodate well to the theoretical predictions 
and, therefore, the results seemed to warrant a Gaussian 
shape for the underlying distributions. However, ROCs for 
speech turned out to be “aberrant”. The empirical ROCs 
were well described as two intersecting linear segments 
(compatible with threshold models) and thus, the 
underlying densities seemed not to be Gaussian.  
A question that arises after Pastore and Macmillan analysis 
is whether “aberrant” ROCs are sufficient evidence for 
underlying non-Gaussian densities in rating scale 
experiments. The point is that SDT typically assumes that 
criteria have zero variances. Therefore, aberrant ROCs 
could emerge not only due to non-Gaussian density shapes 
but also due to nonzero criterion variances. In this work we 
try to demonstrate that non-linear z-transformed ROCs are 
compatible with underlying Gaussian densities under the 
assumption of unequal criterion variances. 
We tested this hypothesis for the /ba/-/pa/ speech 
contunuum and the noise-buzz continuum employed in [7]. 
We constructed ROC curves (double-probability plots) for 
each pair of adjacent stimuli for the two different acoustic 
continua. We expected the speech ROCs to be nonlinear 
since their underlying densities are non-Gaussian [7]. Non-
speech continua can also yield non-linear z-transformed 
ROCs [12]. Thus, if our z-tranformed ROCs for the noise-
buzz turn out to be nonlinear, then we must conclude that 
nonlinear z-transformed ROCs are not a sufficient condition 
for postulating non-Gaussian densities, as long as we have 
demonstrated that a Gaussian model (with unequal criterion 
variances) can fit the data of this non-speech continuum. 
We will then try to show that the non-linear shape of the Z-
transformed ROCs for non-speech has to do with criterion 
densities having unequal variances.  To this end, we will try 
to fit a restricted Thurstonian SDT-like model (i.e., a model 
assuming equal criterion variances) to the non-speech data. 

2 Method

2.1 Participants

Two Spanish monolingual subjects (Castilian dialect) with 
no reported hearing defects participated in these 
experiments. 
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2.2 Stimuli

A /ba/-/pa/ continuum was used for speech. We created it 
by varying the voice-onset-time (VOT) in 10 ms steps. The 
continuum ranged from –35 ms to +55 ms of VOT. 
The noise-buzz continuum was modeled after Miller et al. 
stimuli [13]. Each stimulus consisted of a 100 Hz square 
wave (a buzz) and a wide-band noise. The level of the noise 
was 15 dB below that of the buzz. For one end point the 
buzz led the noise by 35 ms. To make the continuum, 
leading portions of the buzz were removed in 10 ms steps 
until the noise led by 55 ms. 

2.3 Procedure

Each subject was tested in six individual sessions, three for 
the /ba/-/pa/ continuum and three for the noise-buzz 
continuum. The initial session for each was solely for 
training. Within this session the sequence was as follows: 
1. Presentation of endpoints (“ba” or “pa”; “buzz alone” or 
“noise-buzz”) 
2. Identification test on the endpoints with feedback (only 
for nonspeech). This part ended after the subject had 
correctly identified 90% of the stimuli. 
3. Familiarization with the rating procedure. The subject 
was told that different sounds would be presented during 
the experiment requiring two different judgments for each 
one. The stimuli presented in the first part of training were to 
serve as prototypes. The subject first had to give each sound 
one of the two labels used previously and then had to rate how 
well the sound fitted the chosen category. A four-point rating 
scale was provided, where 1 meant a ‘poor exemplar’, 4 a 
‘good exemplar’, and 2 and 3 denoted intermediate values.  
The second and third sessions were devoted to data collection, 
with a common pattern for all three continua. The subject 
identified and rated each stimulus, following the procedure 
learned during training. At the beginning of a session, the 
endpoint stimuli were presented as a reminder. Across the two 
data collection sessions, each subject had 1500 experimental 
trials per continuum. Therefore, for a given continuum, each 
subject gave 150 categorization and rating judgments per 
stimulus for data analysis. 

3 Results

We constructed z-transformed ROC curves (double-
probability plots) for each pair of adjacent stimuli. To do 
this, we first calculated de cumulative probabilities for the 
different criteria involved in the experiment and obtained 
the corresponding z-transforms for a given pair of stimuli. 
Since all our continua contained ten stimuli, we generated 
nine ROCs for each subject in each condition. Thus, a total 
of 36 (9x2x2) curves were computed. 
In our experiments subjects had eight possible response 
categories and, therefore, seven points were available to 
construct each curve. As an example we present in table 1 
the calculations for the (-5, 5) /ba/-/pa/ pair corresponding 
to our first subject. 
 

CUMULATIVE FREQUENCIES 

BA4 BA3 BA2 BA1 PA1 PA2 PA3 PA4 

-5 54 125 138 139 140 145 147 150 

5 26 63 98 115 139 144 145 150 

CUMULATIVE PROBABILITIES 

BA4 BA3 BA2 BA1 PA1 PA2 PA3 PA4 

-5 0.36 0.833 0.92 0.927 0.933 0.987 0.98 1 

5 0.173 0.42 0.653 0.767 0.927 0.96 0.967 1 

Z-TRANSFORMED SCORES 

BA4 BA3 BA2 BA1 PA1 PA2 PA3 PA4 

-5 0.358 -0.967 -1.405 -1.451 -1.501 -1.834 -2.054 -3 

5 0.541 0.202 -0.394 -0.728 -1.451 -1.751 -1.834 -3 

Table 1 

For illustration purposes we plot here several ROCs (see 
Figure 1). The first two correspond to speech data (one per 
subject) while the other two correspond to the noise-buzz 
condition.

To test for nonlinearity we proceeded as follows: 
1. We did not use values were the p(Rj/Si) was zero or 
unity. 
2. For a given set of data we used ROC curves for adjacent 
stimuli where at least four paired z-values were available. 
Curves with fewer points were ignored. 
3. We fitted a linear and a quadratic function to each usable 
ROC and obtained the residuals for each fit. 
4. We combined the linear residuals across all curves in the 
set, combined the quadratic residuals across all curves in 
the set, and ran an F-test on the sums of the squared 
residuals. 
5. If most or all ROC curves in the set were linear, F should 
not be significant. 
The results are summarized in table 2. 

Condition F p 
Speech (1) 48.18 2.2929e-13 
Speech (2) 92.44 5.3595e-12 

Noise-buzz (1) 20.58 1.1460e-4 
Noise-buzz (2) 30.02 1.0217e-5 

Table 2 

As can be seen we found significant differences for both 
subjects on the two conditions (speech and non-speech). 
Deviations from linearity were clearer for the speech (ba-
pa) continuum than for the noise-buzz (broad-band noise + 
square wave) continuum. Nevertheless, on the basis of this 
analysis, it seems that no data set has mainly or entirely 
linear ROC curves. 
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Fig. 1 Some examples of Z-transformed ROCs. The first 
two correspond to speech stimuli and the last two 

correspond to non-speech stimuli. Different points on each 
curve correspond to different criteria. 

We then undertook the task of fitting the non-speech data to 
the constrained Thurstonian SDT-like model.  Thurstone´s 
Law of Categorical Judgment is basically a continuous 
psychophysical model that allows estimates of signal and 

criterion parameters for rating scale experiments. Torgerson  
designated the general (unconstrained) equation Condition 
A (this condition assumes unequal signal and criterion 
variances). We are interested in fitting our rating data to 
what Torgerson called Condition B: under this condition 
only signal variances are unequal)[14]. In particular, 
maximum likelihood estimates were obtained using 
numerical optimization routines (quasi-Newtonian 
algorithm). Obtained parameters were then used to predict a 
theoretical matrix of frequencies for the rating experiment. 
Chi-square tests were used to assess the goodness of fit of 
our predictions. 
For subject one 2=17.629 (5 d.f.), and for subject two 

2=54.817 (4 d.f.). In both cases, the statistical tests show 
that our estimated parameters cannot fit the experimental 
data ( =0.01). Therefore, it is concluded that criterion 
variances need to be unequal in order to predict our rating 
data. 

4 General discussion and conclusions 

Z-transformed ROC curves from both the speech ba-pa 
continuum and the non-speech (noise-buzz) continuum 
seem to depart significantly from linearity. Under the 
standard (Gaussian-equal variance) SDT model this would 
imply that signal densities are not Gaussian. However, in 
[7] it was shown that only the speech signals did not 
accommodate to the Gaussian assumption. The non-speech 
data provided acceptable fits under Condition A of the Law 
of Categorical Judgment. This means that the noise-buzz 
generates non-linear z-transformed ROCs and yet, it evokes 
Gaussian densities on the sensory-decision axis. Therefore, 
it seems that non-linear z-transformed ROCs are not 
sufficient evidence for inferring non-gaussian signal 
densities.  
In a second step, we tried to figure out the possible causes 
of the non-linear plots obtained for non-speech given that 
this departure from linearity is not connected to the shape 
of the signal densities. Treisman and Williams had already 
proposed that subjects try to optimize their performance in 
any psychophysical task by adjusting the location of criteria 
from trial to trial [15]. Thus, one possibility is that, contrary 
to the standard assumption, criterion variances might be 
non-zero and unequal. 
Delving into this possibility, a numerical optimization 
procedure was used in order to try to fit the non-speech data 
to the Condition B of the Law of Categorical Judgment. 
This condition assumes equal criterion variances and, thus, 
if acceptable fits are found, the idea that non-linear z-
transformed  ROCs are a consequence of unequal criterion 
variance can be ruled out. However, no such statistically 
acceptable fits were found for the noise-buzz data. 
Therefore, we find, at least, partial support to the claim that, 
for these stimuli, unequal criterion variances underlie the 
non-linear shape of the z-transformed ROC curve. 
So, as we have shown, the same non-linear plot might arise 
from two very different situations. On the one hand, it 
might come from signal densities not being Gaussian. On 
the other hand, it might come from criterion variances 
being unequal. Interestingly, our data suggest that speech 
and non-speech fall at different places, which provides 
some evidence for modular theories of speech perception 
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[16], [17]. The non-linear ROCs for non-speech might be 
explained in terms of criterion variability; however, those 
for speech seem to be directly connected to the very shape 
of the signal densities they evoke. This seems to lend some 
support to the claim that speech perception requires some 
kind of domain specific processing routines in order to cope 
with the inherent problems associated to this task. 

Acknowledgments 

Burton S. Rosner and Jose E. García-Albea provided 
critical insights for all this work. Part of this work was 
presented at the 147th meeting of the Acoustical Society of 
America [18]. This research was partly supported, by grant 
SEJ2006/11955 from the Spanish Ministry of  Education 
and Science. 

References 

[1] J.A. Swets, “Indices of discrimination or diagnostic 
accuracy: their ROCs and  implied models”, 
Psychological Bulletin  99, 100-117  (1986) 

[2] N.A. Macmillan, R.F. Goldberg, L.D. Braida, 
“Resolution for speech sounds: basic sensitivity and 
context memory on vowel and consonant continua”, J.
Acoust. Soc. Am. 84, 1262-1280 (1988) 

[3] D.B. Pisoni, “Auditory and phonemic codes in 
discrimination of consonants and vowels”, Perception 
and Psychophysics 13, 253-260 (1973) 

[4] B. S. Rosner, “Perception of voice-onset-time 
continua: a signal detection analysis”, J. Acoust. Soc. 
Am. 75, 1231-1242 (1984) 

[5] M.E.H. Schouten, A.J. van Hessen, “Modeling 
phoneme perception I: categorical perception”, J.
Acoust. Soc. Am. 92, 1841-1855 (1992) 

[6] L.E. López-Bascuas, “Speech and nonspeech signal 
densities for the perception of temporal order”, Proc. 
Eurospeech´95, 2281-2283 (1995) 

[7] L.E. López-Bascuas, “Speech signals might ignore 
auditory processors”, In W. Ainsworth, S Greenberg 
(Eds.) Auditory basis of speech perception, 158-161 
(1996) 

[8] L.E. López-Bascuas, B.S. Rosner, J.E. García-Albea,  
“Voicing and temporal order perception by Spanish 
speakers”, Proc. 15th International Congress of 
phonetic sciences, 1, 403-405 (2003) 

[9] M.E.H. Schouten, A.J. van Hessen, “Response 
distributions in intensity resolution and speech 
discrimination”, J. Acoust. Soc. Am. 104, 2980-2990 
(1998) 

[10] R.E. Pastore, N.A. Macmillan, “Signal detection 
analysis of response distributions for intensity and 
speech judgments”, J. Acoust. Soc. Am. 111, 2432 
(2002) 

[11] N.A. Macmillan, C.D. Creelman, “Detection theory: a 
user´s guide”, Cambridge: Cambridge University Press 
(1991) 

[12] M. Treisman, A. Faulkner, P.L.N. Naish, B.S. Rosner, 
“Voice-onset time and tone-onset time: the role of 
criterion-setting mechanisms in categorical 
perception”, Quarterly Journal of Experimental 
Psychology, 48A, 334-366 (1995) 

[13] J.D. Miller, C.C. Wier, R.E. Pastore, W.J. Kelly, R.J. 
Dooling, “Discrimination and labeling of noise-buzz 
sequences with varying noise-lead times: an example 
of categorical perception”, J. Acoust. Soc. Am. 60, 410-
417 (1976) 

[14] W. S. Torgerson, “Theories and methods of scaling”, 
New York: Wiley (1958) 

[15] M. Treisman, T.C. Williams, “A theory of criterion 
setting with an application to sequential dependencies”, 
Psychological Review, 91, 68-111 (1984) 

[16] A.M. Liberman, I.G. Mattingly, “The motor theory of 
speech perception revised”, Cognition, 21, 1-36 (1985) 

[17] I.G. Mattingly, A.M. Liberman, “Speech and other 
auditory modules”, In G.M. Edelman, W.E. Gall, W.M. 
Cowan (Eds.), Signal and Sense: global and local 
order in perceptual maps, New York: Wiley (1990) 

[18] L.E. López-Bascuas, B.S. Rosner, J.E. García-Albea, 
“Voice-onset time and buzz-onset time identification: a 
ROC analysis, J. Acoust. Soc. Am. 115, 2465 (2004) 

Acoustics 08 Paris

8715


