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The new high accuracy multisensor hydroacoustic system for models of codend geometry measurements was
designed for developing the construction of cod codend for the Baltic fishery. The system consists of 20
miniature hydrophones attached by the light-gauge cables to the measuring microprocessor device and notebook
computer. The pulse excitation at high frequency and correlation digital signal processing make it possible to
obtain high resolution of measurements. Additionally each of hydrophones is equipped with the thermistor,
which is used to calculate the local sound velocity and enable precision calibration of obtained measuring data.
This method of calibration is particularly important for measurements investigated in the surface water layer
with the high temperature gradient. The construction details, the measuring digital signal processing algorithms
as well as examples of obtained data and the accuracy verification are presented in the paper.

1 Introduction

With the rapid development of fishing gear and electronic
support equipment over the recent decades, fishing is
becoming increasingly more effective. Sadly, the growing
efficiency of fishing gear coupled with a lack of a fishing
quota policy has badly affected many fish species and
caused serious environmental threats [1]. The Baltic’s
dwindling cod stocks are an example. To curb any further
cod stock decreases the European Union has imposed very
strict fishing quotas on the member states. An important
cause of the drop in cod stocks is the fishing gear, which
catches both mature specimen and young fish which have
not reached reproductive age.

An important task of fishing gear designers is to develop
effective selective fishing gears, especially trawls’ codends
to ensure that only the right size fish are caught leaving
young specimen unharmed. The Department of Fishing
Technique from University of Agriculture in Szczecin has
been developing new fishing gear for many years [2].
Models of new fishing gear are tested and verified at the
Model Research Station on Insko Lake [3].

To obtain reliable trawl data the Department of Fishing
Technique from University of Agriculture in Szczecin
contracted the Department of Marine Electronic Systems
from Gdansk University of Technology to develop
aprototype of a measuring device for precision
measurements of codend geometry and distribution of
forces while towing. Below is the design of the measuring
apparatus.

2 System parameters

The client identified the required technical parameters for
the measuring system. The objective of the system is to
measure the geometry of the cod codend as it is being
towed by the measuring catamaran at the Model Research
Station on Insko Lake.

The measurements should be able to identify minimum 10
distances between pairs of hydrophones located on the
model. The system measures the distance by recording the
time it takes for the acoustic signal to propagate from the
sending hydrophone to the receiving hydrophone. There is
only one measurement at a time between specific pairs of
hydrophones and the subsequent measurements occur in
a series. The distances were identified from 0.1 m to 10 m.
The accuracy of the measurements should not be less than
1 cm, with resolution equal to 1 mm. The series of
measurements should be once every second.
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The system should consist of small size measuring sensors
connected with the on-board computer using 15 m light-
gauge cables. A notebook computer should be used to
control the measurement process and record measurement
data.

The system should allow further development, especially to
include force and towing speed measurement.

3 Problems to be solved

Because of the high expectations for measurement
accuracy, there were a number of technical problems that
needed solving.

3.1 The effects of sound velocity

Sound velocity in water depends greatly on water
temperature and salinity. The measurement system is
designed to operate in inland waters with no salinity. In this
case the sound velocity depends only on the water
temperature. Fig. 1 shows the relation between sound
velocity in water and temperature varying from 0 to 30°C.

If a constant sound velocity were to be used for calculating
the distances, an error of £ 3.7% would occur, which is
significantly above the assumed measurement accuracy for
the maximal scope. This is why sound velocity or
temperatures have to be taken constantly to ensure that

measurement results can be calibrated.
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Fig.1 Change in sound velocity depending on water
temperature.



3.2 Doppler effect

There may be an error in the measurement results when
sound velocity and motion velocity of the model are
summed up. The worst situation will be when measuring
distances in the direction consistent with the model’s
motion. The relative measurement error 4 caused by
Doppler effect can be described in this relation:

A=+Ycos@ , €]
c
where:
v - the velocity of the model,
¢ - sound velocity in water,
® - angle between direction of motion and direction
of measurement.

The error will be negative if the sending hydrophone will
be more to the front of the receiving hydrophone and
positive if situated the other way round. For a towing speed
equal to 1.5 m/s the error will be equal to 1%e.
Measurements perpendicular to the direction of the motion,
i.e. for ©® = /2, will not be affected by error caused by
Doppler effect. For the majority of the measurements
Doppler effect will have a negligible effect on the results.

3.3 Size and shape of hydrophones

Measuring hydrophones and the cables connecting them
should be small enough not to obstruct the motion and
shape of the trawl codend. On the other hand, the size of the
hydrophone in the direction of distance measurement
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should be less than the assumed measurement accuracy.
The hydrophone should maintain a uniform level of the
beam pattern, especially within the distance measurements
plane. Where the measurements will be transverse to the
model’s towing direction, the hydrophone may take the
shape of an elongated cylinder with a diameter smaller than
the distance measurement accuracy and with the light-
gauge cable output towards the rear end of the model.

3.4 Measurement signal and its detection

For high accuracy and resolution of the measurements, it is
advisable to use measuring signals with a wavelength
significantly below the assumed accuracy and a short
duration. Because the length of an acoustic wave in water
equal to lcm equals a frequency of 150 kHz, the
measurement system should use a much higher frequency
of operation. This will also help with keeping the
measuring hydrophones small. Because very short distances
are to be measured (from 10 cm), to ensure a sufficiently
small dead zone, it is advisable to use signals with
a duration less than 50 ps. Short measuring signals are also
good for reducing the effects of multi-channel propagation
on measurement results.

Measurement accuracy and resolution are also affected by
how the measuring signal is detected, and especially by
how precise the receiving time is identified. In case of
interferences, to ensure that false alarm levels are kept to
the minimum, we are forced to raise the detection threshold.
On the other hand, a high detection threshold increases the
measuring error of the signal transmission time.

3 K_1
Sending s_1 =
Hydrophones Qhr‘r‘ E
-
. 1 o —— ¥ 2 K 10 g Address Bus
51 %l ) 7 S_10 B o <
i i w | P
. T 1 S00V o—
-
* Thermistors Tl — + Analog to Digital
o ZII ‘z‘ﬁ'\‘ = | Mux i & Converter
i 1 ! ! ) = [10:1 | ADSgdz22
" yil |T - = F= 2ZMHz
T_10 = MUX Data Bus
—— 2:1 — mux
Receiving T 10:1 3Zhit FP
Hydrophones - |— Digital Signal
& Preamplifiers * I MUX Processor
g DSPTMSI20CE7 13
R_1 7 W) T 20 | i
1 L Address Bus
T 11 _4 H HPI Bus
- T
t  Thermistors E 1
Receiver .
R_10 = %uf 300kHz  |—p— Microcontroller
Q}H . 2 A SPdE0
E 10 15bit
T 20
- PT
TVG - Generator |-t UsB
Force Transducers
F1 O
i NOTEBOOK
F_ 5

Log Impeller

Fig. 2 The block diagram of the system.
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The required high measuring accuracy can only be obtained
by wusing a short measuring signal with a narrow
auto-correlation function and matched filtration in the
receiver.

4  System description

The system comprises three segments:

sensors segment,

electronic circuits segment responsible for sending,
receiving and signal processing,

control and data storage segment in the notebook
computer.

Fig. 2 shows the block diagram of the system. The
measuring sensors segment has 10 pairs of hydrophones for
measuring distances. This segment will soon be extended to
include tensometric transducers for measuring the forces in
the models’ structural elements and a precision impeller log
for measuring towing speed.

The electronic sending and receiving and signal processing
segment is responsible for generating, transmitting and
receiving sequences of measuring pulses, and when they are
processed to a digital form, for making the calculations in
the Digital Signal Processor.

Using a specialist software the notebook selects the
parameters measured and records the results.

4.1 Measuring hydrophones

The measuring hydrophones are built of @ 5 mm x 3 mm
cylindrical piezoelectric ceramic profiles. To obtain the
desired beam pattern, the circular planes of the profiles
were acoustically isolated using layers of cork. This
ensured that the ceramics’ dominant mode of operation is
radial resonance at about 300 kHz. As a consequence, the
length of the acoustic wave in water is equal to 5 mm.
Fig. 3 presents the cross-section of the sending and
receiving hydrophone.

The ceramic profiles and structural elements were
covered with polyurethane to form a @ 9 mm x 90 mm
cylinder externally. To ensure that noise level at the input

RECEIVING HYDROPHONE

SENDING HYDROPHONE

Fig. 3 The cross-section of measuring hydrophones.
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of the receiver is low, an FET transistor preamplifier was
placed inside the receiving hydrophone. The casing of the
hydrophones also includes thermistors for measuring local
water temperature.

4.2 Generating the measurement pulse

Ultrasonic  defectoscopy provided the solution for
generating a short duration measuring acoustic pulse. The
sending hydrophone is excited with a minus 500V
amplitude voltage change. The short duration acoustic pulse
is the hydrophone’s response to the excitation. The
mid-frequency of the measuring pulse in the system is equal
to the resonance frequency of the piezoelectric profile about
300 kHz. The resulting duration of the measuring pulse is
equal to 20 ps, which is consistent with 6 periods of
mid-frequency.

The transmitter comprises the following elements shown in
the block diagram: source of high voltage
-500 V, set of 10 analogue high voltage keys and a decoder.
In the next cycle the measuring pulse is generated by
short-circuiting one of the keys and exciting the sending
hydrophone. A Digital Signal Processor, which manages
the measurements, controls the selection of the key’s
address and its switching with a PT start pulse.

4.3 Signal receiving and matched filtering

The system’s receiving section comprises a set of analogue
multiplexers, band-bass analogue amplifier, source of
power supply for the thermistors, analogue to digital
converter, digital signal processor and microcontroller.

Floating-Point 32-Bit Digital Signal Processor DSP
TMS320C6713 is the main element of the measuring
system. It controls the measuring cycle, carries out digital
filtration of the acoustic signals received and all the
necessary calculations involved in the measurements and
results calibration.

Using an address bus and multiplexer, a receiving
hydrophone is connected to the input of the band-pass
amplifier with mid frequency at 300 kHz. For a fixed signal
level, the receiver uses Time Variable Gain TVG. The
receiver’s output is connected via another multiplexer to an
Analogue to Digital Converter ADC. In keeping with the
measuring cycle the ADC converts also the voltages from
thermistors placed on sending and receiving hydrophones.
The analogue to digital converter ADS8422 ensures that the
processing has a 2 MHz sampling frequency and a 16 bit
resolution.

Microcontroller MSP430 via the Universal Serial Bus USB
acts as an interface between the DSP and the notebook
computer. The microcontroller is also responsible for
controlling the measurements and counting the log impeller
pulses.

The measuring signal sent by the sending hydrophone and
then received by the receiving hydrophone and recorded by
the digital oscilloscope is presented in Fig. 4 a). The shapes
of the pulses depending on the hydrophone pair differ only
slightly. The differences are in the amplitude but the shape,
phase and pulse duration are the same. Figure 4 b) shows
the autocorrelation function computed numerically
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Fig. 5 Receiving signal: a) before, b) after matched filtering.

of a measuring signal. The autocorrelation function has
a clear single maximum for time equal to zero. The curve in
Fig. 4 a) was recorded in the DSP memory and is used as
a template measure signal for digital matched filtration. The
objective of the DSP is to compute the reciprocal
correlation function [4] of the signal received and the
template recorded as in the formula:

0. (m)= S x(aly"n-m), @
where:
@.,(m) — value of m sample of reciprocal correlation

function,
x(n) — value of n sample of signal received,
(k) — conjugated value of k sample of the template.

Matched filtration improves the SNR signal to noise ratio,
which can be clearly seen in Fig. 5. The improvement in
SNR depends on the shape of the signal autocorrelation
function.

A higher SNR improves detection conditions, and the
autocorrelation function with a single maximum makes an
accurate measurement possible. The number of reciprocal
correlation function sample with a maximal amplitude
determines the duration of the measuring signal propagation
time from the sending to receiving hydrophone.

4.4 Sound velocity adjustment

To ensure high measurement accuracy, the actual sound
velocity should be measured or computed indirectly from
water temperature. Placed in each hydrophone, the
thermistors enable precision measurement of local
temperature and when computing the distances for a given
pair of hydrophones they take account of the average sound
velocity computed using measurements at the sending and
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receiving hydrophone. To compute fresh water sound
velocity Marczak’s formula [5] was used:

-2

€ =1.402385x10° +5.038813T — 5.799136x10 272 +3.287156x10 473

~1.398845x10~ 074 +2.787860x10~ 2 1> 3)
9
where:

¢ - sound velocity in m/s,

T - temperature in °C.

Fig. 6 shows the typical distribution of sound velocity in
inland water. The chart shows a rapid decrease in sound
velocity at thermocline depth. Measurements taken at
thermocline boundary, when one of the measuring

hydrophones is above and the other under the thermocline,
measurement accuracy may deteriorate and this should be
avoided when planning measurements.
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Fig. 6 Typical sound velocity profile in inland water.
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Fig. 7 Graphic user interface of application ,,Codend”.

4.5 Application “Codend”

The “Codend” application was developed for the purpose of
operating the measurement system using the notebook. It
serves a Men Machine Interface MMI between the user and
measurement system. The user can define his desired
measurement configuration and visualise and record
measurement results while operating the system.

The first step following the start of the application is to
identify the number of measurements and define them. In
the case of measuring the distances, the user is asked to
complete a cross table with lines for the sending
hydrophones and columns for receiving hydrophones.
Because the number of sending and receiving hydrophones
equals 10, the maximal possible number of distance
measurements is equal to 100. “Codend” application starts,
puts on, hold and terminates a measuring cycle. While the
system is in measuring mode, the main application window
is active, as seen in Fig. 7. It is a typical Graphic User
Interface GUI. On the left-hand side is a window
illustrating the selected measurements and on the right-hand
side is the measurement results table.

The application automatically records the date and time of
the measurements and supports user comments, which will
be helpful later when processing the results.

5 Conclusion

The proposed system and software have helped to obtain
the desired parameters of the measurement system. The
system is now operational and serves as an important tool
for verifying newly designed selective fishing gear
developed by the Department of Fishing Technique from
University of Agriculture in Szczecin.
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